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Abstract

Exam retakes, as other types of shocks or the treatment happening to one of the

players in the network influence not only their future performance but affect all their

network connections. Thus, it is crucial to understand the behavior of the whole

network in response to the retake. It is, however, highly endogenous. The logic used

in peer effect literature is adopted to develop the dynamic model accounting for

the endogeneity of the shock. The model allows predicting the endogenous part of

the friends’ retake and use the unexpected component to estimate the effect of pure

shock on the changes in one’s average grade. The identification conditions for the

effect are derived and the consistent estimation procedure is proposed. It is applied

to the dynamic network data on the students in HSE, Nizhniy Novgorod. The results

suggest that on average the retake of the friend may have a negative effect on future

performance, however, this effect has a different magnitude for students with and

without own retake, as well as for students of different departments.
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1 Introduction

The peer effect, the effect that social connections have on people’s behavior and

achievements, plays an important role when analyzing educational outcomes. While

there are numerous economics papers on peer effects across many fields, from education

to juvenile behavior, the effect of shocking events on the friends network is rarely dis-

cussed. In particular, in the university framework, students’ failures, such as retakes

of examinations or dropouts are usually only discussed for the students’ results in the

same year and not in relation to their friends’ future behaviour. However, the shock

of a friend’s failure influences the future behaviour and outcomes, especially when this

failure was not anticipated.

This project contributes to the literature by covering an existing gap in peer effects

literature and studying the changes of peers’ behaviour and achievement in response

to the individual shock. In contrast to some examples in development literature (e.g.

Comola and Prina (2014)) considering exogenous individual treatment, I propose the

model, allowing the shock to be endogenously formed. Two components of the shock

can be disentangled: predicted probability of the shock and unexpected component. The

latter is considered to be crucial to the changes of future behavior. I am considering

the students’ exam failure as the source of the shock and test the model on the sample

of students of one cohort at the National Research University - Higher School of Eco-

nomics, a highly selective university in Russia. The threat of retakes and dropouts may

put a lot of pressure on students, and the higher probability of failure may result in

lower productivity. Knowing, how these shocks influence the behavior of the students

and their friends, can help to understand the whole dynamics of network performance,

and maybe help universities to adjust the strategy of setting up the retakes’ threshold.

Of course, dropouts are likely to influence future behaviour stronger than retakes, since

the latter can still be fixed. However, the existing data of the dropouts is not sufficient

for proper econometric analysis. I discuss both sources of shock in descriptive analysis

but apply the econometric model only to retakes.

The direction of the effect, however, can be twofold. While the unexpected shock may

serve as a wake-up call and motivate students to be more dedicated to their studies, the

connections can be extremely tight. This can reduce the amount of time spent on one’s

own studies due to the shared activities with the friend either outside of the university,

if the friend left, or helping the friend to prepare for the retake of the exam. The reasons

of the retakes during the studies can be different. In the first year, students are more

likely to fail due to the lack of the abilities or difficulties with adjustments to the new
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environment. The fist exams may appear to be too difficult for some of the students,

even though they had sufficient abilities to enter the university. Students with lower

abilities are either dropping out of the university or adjusting their efforts to improve

performance. In the second and higher year, students are more likely to fail due to

insufficient efforts. Therefore, the shock during the different time periods may have a

different effect on the future performance. This paper discusses only the first year re-

takes at the moment.

Although I do not study the pure peer effect in this paper, I exploit the general idea of

peer effects literature and its methodological fundamentals. Most of the economic liter-

ature that analyses peer effects use the framework and the model introduced by Manski

(1993). He distinguishes three effects that determine the similar behaviour of peers. The

endogenous effect explains that the probability of a particular student to drop out of

the school or university or to fail an exam will be affected by a number of this student’s

peers who have already done so. The exogenous effect uses mean exogenous characteris-

tics of the peer group, such as parental education, socio-economic status (SES), etc., to

determine the probability of the dropout or retake. The correlated effect appears due to

the similar individual characteristics within a group. The most important task of peer

effects analysis is to determine the endogenous effect, which can have important policy

implications.

Identification of these three effects in the case of group interactions requires an ad-

ditional source of exogenous variation, such as exogenous class formation (for example,

Carrell et al., 2009 in military institutions framework and De Giorgi et al. (2010) and

Androushchak et al. (2013) in university frameworks with randomly assigned groups)

or random assignment of dormmates (for example, Sacerdote, 2011). Estimating the

endogenous peer effect as an effect of an average group performance obtained some cri-

tique, and additional assumptions on the structure or the ranking inside the peer group

or even exact links are preferable, but social network data is not always available. Usage

of social network data requires other identifying assumptions, which restrict the network.

Bramoullé et al. (2009) proved the identification of the peer effect in social networks un-

der rather mild assumptions. Poldin et al. (2015) use the same identification result to

study the peer effect in the university framework using HSE dataset.

The identification of the direct effect of shock on the friends’ future outcome is, how-

ever, more challenging, since the changes of the performance are not driven solely by

the effects of the shocks. Exogenous and unobserved characteristics of the student and

his peers as well as the changes in the network structure are among the other determi-

nants. Moreover, as was already mentioned, the shock itself is not exogenous, and its
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significant part is driven by the model itself. The paper proposes an econometric model

which deals with both problems and estimates the effect of the shock: a two-step dy-

namic peer effects model. The first step estimates the probability of the shock adopting

the instrumental variable 2SLS approach discussed by Bramoullé et al. (2009) after Lee

(2003). The second step uses the residuals from the first stage to estimate the effect of

the unexpected component of the changes in students’ performance.

To the best of my knowledge, this project is the first to introduce the dynamic peer

effect in social networks model with endogenous shock1. Moreover, I provide the iden-

tification results for this model and propose estimation procedure. The identification

and estimation of the first step are the straightforward adjustments of the Bramoullé

et al. (2009) approach, and requires the existence of intransitive triads in the network

given the assumption of no correlated effects, i.e. friends of some student’s friends not

connected to him or her. Hence, the friends of friend affect the student not directly,

but via the common friend only. If the assumption of no correlated effects is relaxed,

the stricter identifying assumption is necessary. The whole network should include pairs

of students with the distance between them of length three or bigger. They are not

connected directly, and the shortest path from the one to the other has not less than

three links. Friends of friends are used to deal with the correlated effect, therefore, the

next level of friends is used as an identifying assumption. The identification of the sec-

ond step is novel and demonstrates the necessity of the network longitudinal variation.

Changes of the network allow comparing the influence of ”old” and ”new” peer group on

the outcome. The presence of the new friends and absence of old ones creates variation

in the peer group characteristics and this helps to identify social effects and the effect of

the shock. However, it is important that the changes of the network are not driven solely

by the shock. Moreover, at the moment, I do not model link formation, and therefore, do

not distinguish between different types of network changes and treat them all as equal

and given.

The variation of the network is a valid assumption for the students’ network setting.

The links formed in the first year are highly likely to be revised due to the gradual

unveiling of the friends’ personal characteristics. Some of the links might be broken,

however, due to the exam retakes and dropouts of the friends. The student may seek for

a more advantageous peer group or he/she no longer spends much time with the friend

preparing for the retakes. But even if the friend fails an exam and the link stays stable

in the network, the student may tend to connect to the students with higher results, cre-

ating new links. The exam retake is endogenous in the model, and only an unexpected

1See, for example, a review of the recent econometric literature on networks in Paula (2015)
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component of the retake probability is considered as a shock. The influence of this unex-

pected component on link formation is not the same as possible channels of influence of

retakes on link formation, discussed previously, therefore, the actual importance of the

shock for link changes might be lower than the one of exam retakes. The model in the

paper is discussed without link formation process and, therefore, under the assumption

that changes in the network are exogenously given. This setup is a bit restrictive, and

relaxation of this assumption will be considered for future research.

The magnitude of the endogenous effects in different periods is considered to be dif-

ferent, since the unexpected shock may affect performance via the changes of the peer

groups, and not only directly. The break of the link itself makes the peer group ”better”,

then the improvement of the results can also be caused by the group’s refinement.

Dropouts and retakes are important to study from the university’s perspective. Dropouts

create the sunk costs for the university. For example, costs of the university dropouts in

Germany were estimated at the level of $11.5 billion in 20072 and in Australia at $1.36

billion3. Some of the dropouts are the results of the policies of the university, which

can be controlled. In some institutions of higher education, as in the sample used in the

analysis, most of the dropouts are directly affected by the retakes. In HSE 3 retakes

during the same exam session term will lead to the expulsion of the student. Therefore,

understanding the possible mechanisms of retakes’ influence on future performance may

suggest possible university-level policy improvements in order to reduce sunk costs.

The paper is organized as follows. Section 2 discusses the proposed model, states

the identifying assumptions, and proposes the estimation method. Section 3 describes

the data used and the institutional environment of the educational system in Russia, as

well as results of the descriptive analysis. Section 4 provides the estimation results and

evidence of the influence of dropouts and retakes on peers. Section 5 concludes.

2 Model

2.1 Näıve approach

I propose a two-step model that allows estimating the effect of an unexpected event

happening to network connections. Although I do not conduct the pure peer effect

estimation, I use the classical peer effect model as a baseline.

A näıve way to write down the dynamic peer effect model without modelling the link

2The figures are obtained by the Stifterverband, association of German science and higher education
donors. Details can be found on UWN website

3According to the report on UWN website
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formation:

y1i = α1 + β1
∑
j 6=i

G1
ijy

1
j + γ1X

1
i + δ1

∑
j 6=i

G1
ijX

1
j + ξi + ε1i , E[ε1i |X1] = 0, (1)

y2i = α2 + β2
∑
j 6=i

G2
ijy

2
j + γ2X

2
i + δ2

∑
j 6=i

G2
ijX

2
j + ξi + ε2i , E[ε2i |X2] = 0, (2)

where y1i and y2i are outcome variables of student i in the first wave and the second wave

correspondingly. I will consider the average grade in the main specification of the model.

Student’s rating or grades for some specific subjects, which last more than 1 term, are

used for robustness checks;

Xi is a vector of individual characteristics that should be controlled for, such as gen-

der, city of origin, living conditions, some socioeconomic family characteristics. In the

discussed empirical example it also includes the results of the high school examination,

universal and obligatory for all the students graduating the high school.

G1
ij and G2

ij are two adjacency matrices for the first and the second waves correspond-

ingly, weighted by the number of links, and their entries have the value of 1/ni if the

link from student i to student j exists. Note that this matrices are not necessarily sym-

metrical, since the social network can be both directed (as in the sample used later) or

undirected.

ξi - student-level unobserved fixed characteristics, which may influence students’ perfor-

mance and choice of connections.

Those unobserved individual characteristics also reflect the homophily of the individ-

uals, which may influence both link formation and the network outcomes. In the case of

group interactions group fixed effects are often introduced to eliminate correlated effects,

whereas in the case of interactions in big networks network fixed effects make little sense.

Local differences, proposed by Bramoullé et al. (2009), may be used to address the issue

of correlated effects. However, the dynamic structure of the data allows solving this issue

differently. The dynamic peer model can be then written in terms of differences, and this

will eliminate possible unobserved fixed effect component in the error term, consisting of

the common for individual’s connections unobservable component and individual’s own

unobserved fixed characteristics.

∆yi = ∆α+β2
∑
j 6=i

G2
ijy

2
j−β1

∑
j 6=i

G1
ijy

1
j +γ2X

2
i −γ1X1

i +δ2
∑
j 6=i

G2
ijX

2
j −δ1

∑
j 6=i

G1
ijX

1
j +∆εi

Assumption A. The outcome variable of a single period can be estimated using the

one-period model.
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This additional assumption allows avoiding the autoregressive component in the second-

period model. Assumption A is valid, because the model, including observed and un-

observed fixed effects characteristics as well as endogenous and exogenous peer effects,

is sufficient to predict the educational achievements. Therefore, it can be claimed that

there is no additional mechanism that can influence the outcome via the previous pe-

riod’s outcome.

The proposed model system (1) and (2), and consequently, the model written in

differences, can be further modified in order to catch the desirable effect of shock. In

the näıve way, similar to the model of Comola and Prina (2014), the model will now be

as follows:

The equation for the first period should remain unchanged:

y1i = α1 + β1
∑
j 6=i

G1
ijy

1
j + γ1X

1
i + δ1

∑
j 6=i

G1
ijX

1
j + ξi + ε1i ,

Whereas, the second-period model shall take into account the shock of unexpected

retake of the friend. The straightforward way to do it is just to include the binary

variable in the vector of controls:

y2i = α2 + β2
∑
j 6=i

G2
ijy

2
j + δ̃Di + γ2X

2
i + δ2

∑
j 6=i

G2
ijX

2
j + ξi + ε2i

where Di is a dummy for having any friends with a retake in the first period4.

The system can then be re-written in differences, eliminating the possible individual

fixed effect:

∆yi = (α2 − α1) + β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + γ̃Di +

+γ2X
2
i − γ1X1

i + δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ε2i − ε1i

However, this type of the equation is only valid if the shock is exogenous, as in the ex-

amples of randomized treatment. A big share of the probability of the student’s retake

can be explained by the observed component of the model, and therefore, the retake

itself cannot be considered as unexpected shock. I propose to use the peer effect model

of the first period to disentangle predictable and unexpected parts of the probability of

4In general the coefficients in the model with the shock are different from the baseline one-period models
(1) and (2), but I left the same notations for simplicity
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the retake, and use the unpredicted part only to estimate the effect of the shock on the

performance.

Comola and Prina (2014) also model the changes of the network as a response to

the exogenous treatment. At the moment, I am not modelling the link formation. The

variation of the network links is assumed and is a crucial identifying assumption. Im-

portantly, a significant part of the changes in the structure of the friendship networks is

caused by the individual characteristics and outcome and not solely by the exam retake.

The influence of the retake and of the unpredicted component of the retake on the link

formation also should be treated and interpreted differently, since the probability of the

exam retake is endogenous. The following assumption, therefore, should be made. As-

sumption B. Changes of the network as a response to unexpected shock are neglected,

and all changes of the network itself are treated as exogenous.

This assumption can potentially cause overestimation of the direct effect of the shock,

and therefore, should be relaxed in the future research.

2.2 Proposed model with no correlated effects

2.2.1 The model

Taking into account all above-mentioned argument, I estimate the following model at

the first step:

P (retakei) = α+ β
∑
j 6=i

G1
ijy

1
j + γX1

i + δ
∑
j 6=i

G1
ijX

1
j + ξi + νi, E[νi|X1] = 0 (3)

In this specification, the error term consists of two parts: unobserved correlated effect,

and conditionally independent noise. Dynamic peer effect model will eliminate the cor-

related effect component at the second step of the model, leading to the conditional

independence of the error term. However, on the first step in general E[ξi + νi|X1] 6= 0.

I will discuss two cases: assuming no correlated effects and with correlated effect. The

latter will be considered in the later subsections. For the former, (3) will be transformed

as follows :

P (retakei) = α+ β
∑
j 6=i

G1
ijy

1
j + γX1

i + δ
∑
j 6=i

G1
ijX

1
j + νi, E[νi|X1] = 0 (3a)

I then take the residuals of the equation (3a), which is the part of the probability of

the friends’ retake not predicted by the model. I then construct the shock for student

i as the combination of the residuals for the students in the network of i. The baseline
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specification uses the average of the residuals: URi =
∑

j 6=iG
1
ij ν̂j . However, the other

approaches to define URi is possible: maximum of friends’ unpredicted probability of

the exam retakes, residuals for the friends named first, or average weighted according

to the order, with which friends are appearing in the answers of the students. The

identification results and estimation procedure are not affected by the choice of the

approach to defining URi. Then I am using it as an unexpected shock to plug-in in the

following equation:

∆yi = (α2 − α1) + β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + δ̃URi + γ2X

2
i − γ1X1

i +

+ δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ∆εi (4)

Since the model in differences eliminates possible individual fixed effect component in

error term, I am able to make a stricter assumption on the error term: E[∆εi] = 0,

instead of the conditional expectation. This condition will be used to prove the model

identification.

Model in differences, additional to the elimination of individual fixed effect, gives a

better interpretation of the studied effect. It estimates the changes of own performance

in response to the shock additional to the changes of performance in comparison to the

classmates, obtained by the single-period model.

Note that the coefficients for the endogenous peer effect and exogenous characteristics

are considered to be different in two periods: β2 and β1 and δ2 and δ1. Students may

experience the different magnitude of the effects depending on how advanced they are in

their studies, how well they are adjusted to the university environment, etc. Moreover,

this also allows to take into account the changes in the network, since the students are

experiencing the influence of two different peer groups in two periods.

The own retake of the student is not included explicitly in the model. The unexpected

component for the students themselves is close to zero since they can anticipate most

of the retakes after writing the exam. Moreover, the outcome of the previous period

partially takes care of own retakes. Nonetheless, in the empirical analysis, I will also

split the sample and study the effect for those, who were retaking the exams, and for

those, who were not, to tackle down possible differences.
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2.2.2 Identifying assumptions

The identification results for the first step of the model adopt Bramoullé et al. (2009)

approach, whereas the result, obtained for the second stage, is, to the best of my knowl-

edge, a novel result for the literature.

Lemma 1 Let γ21 + δ21 6= 0 and β1 6= 05. If matrices I, G1, (G1)2 are linearly indepen-

dent, coefficients in (3a) are identified.

The proof of the Lemma is given in Appendix A. This is exactly the condition obtained

by (Bramoullé et al., 2009), and can be proven similarly. The identification of the coeffi-

cients on the first step, hence, allow using the obtained residuals for the further analysis.

The identification is ensured by the existence of intransitive triads in the network, i.e. the

existence of a set of three individuals i, j, k such that i is influenced by j, j is influenced

by k, but i is not influenced by k. This is a valid assumption for most networks, in par-

ticular, for the sample analysed in this paper, which will be discussed in the next section.

Lemma 2 In the case of no correlated effects, if the assumptions of Lemma 1 hold,

if γ22 + δ22 6= 0 and β2 6= 06, if matrices I, G2, (G2)2 are linearly independent, and if

G1 6= G2, with changes not driven by the shock only, coefficients in (4) are identified.

Identification of Step 2 relies heavily on the variation in the network structure. However,

it is important that some changes in the network are exogenous. This assumption is

quite reasonable for the friendship networks. Students are likely to learn more about

their classmates with time, and the friendships, created during the first year, are often

unstable.

Once there are new links formed in the next period, the variation between new and old

connections help to capture the effect of the changes in the average grade. For example,

if a student i is no longer connected to student j, and therefore, is not affected by student

j, his performance can be evaluating in the two cases and the comparison of two results

will result in the effect of not having friend j , and hence, the social effects are easier to

catch. The identifying assumptions also put the restriction on the friendship matrix of

the second period, as in the first period: the network should include intransitive triads.

The proof of Lemma 2 can also be found in Appendix A, and the validity of identifying

assumptions will be discussed in the next Section.

5These are the coefficients from the baseline peer effect model (1).
6The coefficients from the baseline peer effect model (2)
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2.3 Model with correlated effects

2.3.1 The model

As was already mentioned, the correlated effect appears due to the similar individual

characteristics within a group. The correlated effect is unlikely to be present in big

networks, however, once the network may suggest existence of smaller groups or sub-

networks in it, the correlated effects are more likely to be present. In the empirical

application discussed in this paper, most of the connections are formed inside of the

same department, and even inside of the same exogenously formed study group. There-

fore, the possible correlated effects could not be ignored and can cause an additional

identification issue.

To deal with it and eliminate unobserved variables, I propose taking the local differ-

ences, i.e. averaging the equation (3) over the friends of i and subtracting this average

from (3) and noting that ξi are the same for the students in one smaller network, and

hence, it will vanish after taking the local differences:

P (retakei)−
∑
j 6=i

G1
ijP (retakej) = β

∑
j 6=i

G1
ij [y

1
j −

∑
k 6=j

G1
jky

1
k] + γ[X1

i −
∑
j 6=i

G1
ijX

1
j ]+

+ δ
∑
j 6=i

G1
ij [X

1
j −

∑
j 6=k

G1
jkX

1
k ] + ηi, ηi = [νi −

∑
j 6=i

G1
ijνj ], E[ηi|X1] = 0 (5)

Similarly to the case without correlated effects, I construct the shock for the student

i, taking the average of their networks residuals: URi =
∑

j 6=iG
1
ij η̂j . The second stage

is then identical to the case with no correlated effects:

∆yi = (α2 − α1) + β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + δ̃URi + γ2X

2
i − γ1X1

i +

+ δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ∆εi (6)

Model in differences, additional to the elimination of individual fixed effect, also gets

rid off the correlated effects, therefore, no local differences are needed for the second

stage equation.

2.3.2 Identifying assumptions

The identification results for the first step of the model again adopt Bramoullé et al.

(2009) approach, whereas the result, obtained for the second stage, is new.
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Lemma 3 Let γ21 + δ21 6= 0 and β1 6= 07. If matrices I, G1, (G1)2, (G1)3 are linearly

independent, coefficients in (5) are identified.

The proof is given in Appendix A. This condition again follows the result of (Bramoullé

et al., 2009) in the presence of correlated effects, and can be proven in the similar man-

ner. The identification of model with correlated effects is ensured by the existence of

distances between two students of length 3 and more, i.e. the existence of a set of at least

4 individuals i, j, k,m such that i is influenced by j, j is influenced by k, k is influenced

by m, but i is not influenced by both m and k, and j is not influenced by m. This is a

bit more demanding assumption than in the case of no correlated effects, but still valid

for a lot of networks’ types, and in particular, for the sampled network, which will be

discussed in the next section.

Lemma 4 In the case of correlated effects, if the assumptions of Lemma 3 hold, if

γ22 + δ22 6= 0 and β2 6= 08, if matrices I, G2, (G2)2, (G2)3 are linearly independent, and

if G1 6= G2, with changes not driven by the shock only, coefficients in (6) are identified.

Identification of Step 2 again heavily relies on the variation in the network structure.

Moreover, the restrictions are put on the friendship matrix of the second period, requir-

ing the distances between two students of length 3 and more. The proof of Lemma 4 is

presented in Appendix A.

2.4 Estimation strategy

2.4.1 No correlated effects

I first discuss the model that does not take into account correlation effects: (3) with

no ξi and (5).

Step 1. I partially repeat Bramoullé et al. (2009) for the first step and use the adaptation

of Generalized 2SLS strategy proposed by Kelejian and Prucha (1998) and refined by

Lee (2003). As the identification result suggests, ((G1)2X, (G1)3X, . . . ) can be used as

valid instruments to obtain consistent estimators.

First, recall the peer effect model in reduced form, written in matrix notations, offered

in Bramoullé et al. (2009):

y1 = α1i+ β1G
1y1 + γ1X

1 + δ1G
1X1 + ν1, E[ν|X1] = 0,

7The coefficients from the baseline peer effect model (1)
8The coefficients from the baseline peer effect model (2)
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which gives

E[G1y1|X1] = (I − β1G1)−1G1α1 + (I − β1G1)−1G1(γ1I + δ1G
1)X1

Note that the fist step model can be written as follows:

PR = α+ βG1Y 1 + γX1 + δG1X1 + ν, E[ν|X1] = 0 (7)

I propose the following procedure that gives the consistent estimator of θ = (α, β, γ, δ):

First, compute the 2SLS estimator for θ1 = (α1, β1, γ1, δ1) of the standard peer effects

model, using the following vector of instruments S = [i,X1,G1X1, (G1)2X1],

and with the vector of covariates X̃1 = [i,X1,G1X1,G1y1].

θ̂12SLS = (X̃1TPSX̃
1)−1X̃1TPSy

1, where PS = S(STS)−1ST is a projection

matrix.

Second, define Ẑ = Z(θ̂12SLS) = [i,X1,G1X1,E[G1y1(θ̂12SLS)|X1]],

where E[G1y1(θ̂12SLS)|X1] = G1(I−β̂1,2SLSG1)−1α̂1,2SLS+G1(I−β̂1,2SLSG1)−1

(γ̂1,2SLSI + δ̂1,2SLSG
1)X1

Finally, use Ẑ as a vector of instruments to estimate (5). Note that the vector of

covariates coincides with the one used at the first step: X̃1. Then the following

consistent estimator is obtained: θ̂Lee = (Ẑ
T
X̃1)−1Ẑ

T
PR.

This procedure is a modification of a procedure proposed in Lee (2003), therefore, the

consistency result is closely related to his Theorem 1:

Lemma 5 Under regularity conditions defined in Appendix A, the estimator θ̂Lee is

consistent and has the following limiting distribution,

√
n(θ̂Lee − θ)

D−→ N (0,Ψ), (8)

with Ψ = σ2ν(limn→∞
1
nZ

TZ)−1 and

Z = [i,X1,G1X1,G1(I − β1G1)−1α1 + (I − β1G1)−1(γ1I + δ1G
1)X1]

Discussion and detailed proof of the consistency of such estimator are given in Appendix

A.

Step 2. I am approaching the estimation of the second step also adopting the 2SLS

procedure discussed for the first step. First, the model (5) can be rewritten in the
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following way:

∆y = (α2 − α1)i+ β2G
2y2 − β1G1y1 + δ̃UR+ γ2X

2
TV − γ1X

1
TV + δ2G

2X2−

− δ1G1X1 + ∆ε, with UR defined as discussed in Section 2.2 (9)

By X1
TV , and X2

TV I denote the subset of covariates, which are time-variant to avoid

singularity problem of estimation.

Then a vector of covariates is as follows: X̄ = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

G1y1,G2y2]. Following the logic of the first step I use (G2)2X2 as an instrument

for G2y2. However, E[(G1y1)T∆ε] 6= 0, hence the instrument for G1y1 is required.

I propose to use E[G1y1(θ̂12SLS)|X1] as an instrument, as obtained on the step 1. It

is obvious that such an instrument is a valid instrument since it is uncorrelated with

the second step error term and is clearly correlated with the outcome variable. Then

I define M = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,E[G1y1(θ̂12SLS)|X1], (G2)2X2] as a

vector of instruments.

I modify (7), taking expectations given X2 and recalling E[∆ε] = 0:

(I − β2G2)E[y2|X2] = (α2 − α1)i+ (I − β1G1)y1 + δ̃UR+ γ2X
2
TV − γ1X

1
TV +

+δ2G
2X2 − δ1G1X1

E[y2|X2] = (I − β2G2)−1[(α2 − α1)i+ (I − β1G1)y1 + δ̃UR+ γ2X
2
TV − γ1X

1
TV +

+δ2G
2X2 − δ1G1X1]

Let E[G2y2(φ)|X2,X1] = G2(I − β2G2)−1[(α2 − α1)i+ (I − β1G1)E[y1(θ1)|X1] +

δ̃UR+γ2X
2
TV −γ1X1

TV +δ2G
2X2−δ1G1X1], where E[y1(θ1)|X1] = G2(I−β1G1)−1α1+

(I − β1G1)−1(γ1I + δ1G
1)X1.

Then I also define the following vector Z̄ = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

E[G1y1(θ1)|X1],E[G2y2(φ)|X2,X1]

I propose the following estimation procedure:

First, compute the 2SLS estimator for φ = (α1, α2, β1, β2, γ1, γ2, δ1, δ2) of the (7), using

a vector of instruments M and a vector of covariates X̄1, as defined above.

φ̂12SLS = (X̄
T
PMX̄)−1X̄

T
PM (y2 − y1), where PM = M(MTM)−1MT is a

projection matrix.

Second, define ˆ̄Z = Z̄(φ̂2SLS) = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,E[G1y1(θ̂12SLS)|X1]],

E[G2y2(φ̂2SLS)|X2,X1],

14



where E[G1y1(θ̂12SLS)|X1] = (I−β̂1,2SLSG1)−1α̂1,2SLS+(I−β̂1,2SLSG1)−1(γ̂1,2SLSI+

δ̂1,2SLSG
1)X1, with θ̂12SLS obtained as the estimation of the first stage on the first

step.

and E[G2y2(φ̂2SLS)|X2,X1] = G2(I − β̂2,2SLSG2)−1[(α̂2,2SLS − α̂1,2SLS)i+ (I −
β̂1,2SLSG

1)E[y1(θ̂12SLS)|X1]+
ˆ̃
δ2SLSUR+γ̂2,2SLSX

2
TV −γ̂1,2SLSX1

TV +δ̂2,2SLSG
2X2−

δ̂1,2SLSG
1X1]

Finally, I use ˆ̄Z as a new vector of instrument to estimate (7). Then the following

consistent estimator is obtained: φ̂Lee = ( ˆ̄Z
T
X̄)−1 ˆ̄Z

T
(y2 − y1).

The consistency of this estimator is less straightforward, but it holds under the regu-

larity conditions. The proof of the following Lemma is provided in Appendix A.

Lemma 6 Under regularity conditions defined in Appendix A, the estimator φ̂Lee is

consistent and has the following limiting distribution,

√
n(φ̂Lee − φ)

D−→ N (0,Φ),

with Φ = (σ2ε1 + σ2ε2)(limn→∞
1
nZ̄

T
Z̄)−1

2.4.2 Correlated effects

If the correlated effects are assumed to be present in the model the fist step model

can be written as follows in matrix notation:

(I −G1)PR = β(I −G1)G1Y 1 + γ(I −G1)X1 + δ(I −G1)G1X1 + η,

η = (I −G1)ν, E[η|X1] = 0

I then use the peer effect model in local differences proposed in Bramoullé et al. (2009):

(I −G1)y1 = β1(I −G1)G1y1 + γ1(I −G1)X1 + δ1(I −G1)G1X1 + (I −G1)ν1,

E[ν1|X1] = 0,

which gives

E[(I −G1)G1y1|X1] = (I − β1G1)−1(I −G1)G1(γ1I + δ1G
1)X1

The proposed estimation procedure, in this case, is close to the first step with no corre-

lated effects. I redo all the steps with the following vectors of instruments and covari-

ates: instruments S = [(I −G1)X1, (I −G1)G1X1, (I −G1)(G1)2X1] and covariates
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X̃1 = [(I −G1)X1, (I −G1)G1X1, (I −G1)G1y1].

Then I find the 2SLS estimator on the first step and use it to get the new vector of in-

struments: Ẑ = Z(θ̂12SLS) = [(I−G1)X1, (I−G1)G1X1,E[(I−G1)G1y1(θ̂12SLS)|X1]],

where E[(I −G1)G1y1(θ̂12SLS)|X1] = G1(I − β̂1,2SLSG1)−1(I −G1)(γ̂1,2SLSI+

+δ̂1,2SLSG
1)X1.

The consistent estimator can then be obtained as follows: θ̂Lee = (Ẑ
T
X̃1)−1Ẑ

T
PR.

Note that the proof of consistency follows directly by combining the result of Lee (2003)

and the proof of Lemma 5, which can be found in Appendix A.

Step 2 also requires some adjustments in this case. Due to the presence of corre-

lated effects, E[G1y1(θ̂12SLS)|X1] is no longer observable since it includes the unob-

served fixed effects correlated with covariates and cannot be used as an instrument.

Hence, I need to modify both vectors of covariates and instruments in the following

way: X̄ = [(I−G1)X2
TV , (I−G1)X1

TV , (I−G1)G2X2, (I−G1)G1X1, (I−G1)UR,

(I−G1)G1y1, (I−G1)G2y2] is a new vector of covariates. I then use (I−G1)(G2)2X2

as an instrument for (I −G1)G2y2. I propose to use E[(I −G1)G1y1(θ̂12SLS)|X] as

an instrument for (I −G1)G1y1. This instrument is clearly a valid instrument since it

is uncorrelated with the second step error term and is clearly correlated with the out-

come variable. Then I define M = [(I −G1)X2
TV , (I −G1)X1

TV , (I −G1)G2X2, (I −
G1)G1X1, (I−G1)UR,E[(I −G1)G1y1(θ̂12SLS)|X], (I −G1)(G2)2X2] as a vector

of instruments.

Applying the same changes to all relevant vectors, I then fully repeat the estimation

procedure of the case of no correlated effects, and obtain the consistent estimator. Con-

sistency of the estimator is achieved by the argument similar to the one in Lemma 6,

proof of which and more detailed discussion on estimation procedure can be found in

Appendix A.

3 Data and Descriptive analysis

3.1 The system of higher education in Russia and specifics of the sampled

university.

People with completed full vocational education or completed professional education

of non-university level are eligible to enter the university9. Most of the places in the

9It is more accurate to call them the institutions of tertiary or post-secondary education, since not all
of these institutions in Russia have the status of the university, however, the university will be used
for simplicity
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state universities are financed by the government: around 65%10, but it differs among

institutions. For example, the analysed in this paper university, National State Univer-

sity - Higher School of Economics, Nizhny Novgorod branch, provided 340 state-financed

places out of total 431 in 201211. The tuition fee varies from institution to institution, in

our example, it varies between 130000 and 165000 Rubles, which equals to 28-36 times

the minimum monthly wage or 18-23 times the minimum cost of living in Russia.

The students are accepted to the universities depending on the scores of the obligatory

standardized examination, Unified School Examination, conducted at the end of the last

school year. Each high school graduate has to take the exam in several subjects: Math-

ematics and Russian are mandatory to graduate from the school, the other subjects are

chosen by the graduates depending on their preferences and the requirements of the uni-

versities they are aiming to apply to. For example, economic department of NRU-HSE

requires the USE results in Social Studies (a mixture of basic knowledge about different

aspects of society: philosophy, sociology, social psychology, law, political science) and

Foreign language additional to the mandatory to all graduates Mathematics and Russian.

However, regional and national level Olympiads can often be used as the second channel

to enter some of the universities. These Olympiads are subject-specific and considered

to be more sophisticated than the school exams, so they are designed to attract more

talented students. In Higher School of Economics, the winners and prize-takers of these

competitions are accepted to the university without exams if the major of the Olympiads

corresponds to the university department (Economic Olympiads for economics depart-

ment, Entrepreneurship Olympiads for management department etc.) or automatically

given the highest score for the other subjects. However, those students are still required

to take the USE and have the scores not lower than the required minimum (65 out of 100

in 2015, significantly lower than the requirement to be accepted). The share of students

entering universities using the Olympiads results is around 5-6% overall in Russia, but it

is much higher for the Higher School of Economics, around 40%, because of the selective

status of HSE. Therefore, in general, the group of students entering HSE is more or less

homogeneous and consists of the high-achievers. Even though Nizhniy Novgorod branch

of HSE is less selective than the main Moscow branch, the level of the admitted students

is still very high. The list of all accepted students is publicly available in the university

itself as well as on the website.

Usually, universities in Russia have an exogenous group formation. The students are

randomly split into groups of 20-30 people before the beginning of the studies. These

10According to the Monitoring of education markets and organizations (MEMO), NRU HSE. In Russian
11The main dataset uses 2012 cohort of students, details are described in the next subsection
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groups stay mainly intact for the first three years. Several groups or even all students

attend lectures together, whereas each group has separate tutorials. The changes to the

group structure may occur if a lot of the students leave the university and the group

is too small. Most of the universities have by now adopted the Bologna Process model

of 4 years for Bachelor’s degree and 1-2 years of Master’s degree. In most cases each

academic year has 2 terms with exams periods after each, however, HSE has 4 terms

per year, with some exams or pass-fail exams after the 1st and the 3rd term and with

most exams after the 2nd and the 4th term. The student is not allowed to fail 3 or more

exams per half (1+2 or 3+4 term) and the retakes are conducted only after the 2nd

and 4th exam periods of each year. All results of all students are publicly available near

the students’ office in the university and online so that everybody can follow their own

performance, compare to the peers, and the tuition students can understand, whether

they are eligible for the tuition discount.

3.2 Data description

The data is based on two longitudinal studies of the students’ network, conducted in

the National Research University Higher School of Economics (Nizhny Novgorod branch;

state university). The information about the studies is summarized in Table 1.

Table 1: Studies characteristics

Study Cohort Frequency Departments Total students

I 2012 Each year Economics, Management,

Law, Computer Science

321

II 2013 Each 3-4 month Economics, Management 205

Students were asked to indicate three and two networks correspondingly: friends from

the university (same cohort), students from the same cohort, whom they ask for help

(in the first study this question is divided into two: help with mathematical subjects

and help with humanities). The I study is of the main interest of the paper due to the

longer periods between the surveys that are able to capture a more persistent trend of

the network dynamic. The II study is used only for the robustness check of the results.

Other data include all exam results, information about retakes and dropouts from

the administrative university data, as well as some personal data: gender, high school

examination results, type of living (dormitory or not, roommates for those who live in

the dormitory), parental education, some indicators of willingness to succeed or efforts

(time spent on homework, time spent online on social networks, indicator of having a
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job parallel to studies).

The typical problems of self-reported data are present in the dataset. There are several

observations with partially missing data on the network links. These entries need to be

handled with care since they might suggest both the students without friends, indicating

the antisocial behavior, or the students that just skipped the questions, while answering

the questionnaire. In the I study 13 students indicated no friends links, however, two

of those provide an information about connections in the help networks, which might

demonstrate an antisocial behavior of the students. There is no information on particu-

lar friends for 4 more students, who just said they are friends with a lot of students, or

even with all students. In the II study, there are 9 students without links, however, it is

not clear, whether they did not report anybody at all or whether they answered with a

sentence, as 4 students from the I study, mentioned above.

Sampling is of a slight concern as well. The first survey has 321 observations out of

396 students that entered the 4 departments of the university in 2012, the second has

205 out of 253 students, started in 2013 in 2 departments, that gives approximately

75-80% of the full population of students (Table 2). Some of the students could have

indicated the link to somebody outside of the sample, which can lead to overestimation

of the importance of the observed links. However, the survey was conducted on several

occasions, during lecture periods, so those, who did not answer the survey, are likely to

attend the university only infrequently, and hence to have less influence on the other

students.

Table 2: Comparison of samples and population

Sample All students Share

I, year 1

Size 320 432 74.07%

Retakes 157 203 77.34%

Dropouts 16 40 40 %

I, year 2

Size 296 393 75.32%

Retakes 148 190 77.89%

Dropouts 24 39 62.54%

II

Size 205 254 80.7%

Retakes 65 137 -

Dropouts 6 21 28.57%
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Table 2 also demonstrates an inability of the dataset to catch all the information about

the dropouts (only 40% are present in the first survey) and their small amount in the

network. This makes the econometric analysis of dropouts implausible, and forces to

study exam retakes instead.

Note that the I study restricted the friends’ network to 7 names, whereas the II study

did not put any restriction. This lead to almost 50% of the students in the first period

of I study reporting exactly 7 friends, whereas only 13,5% of the students in the II study

indicated the same number of friends. The second wave of the long study also has space

for mentioning the maximum of 7 friends, however, this restriction is not mentioned in

the question itself. Therefore, 7 friends are the maximum of the 2nd wave of the long

study with only 10% indicating exactly 7 friends. The distribution of the number of

the friends for both studies is presented in Table 1 and Figure 1 of Appendix B. The

average and median number of connections is 6 in both first year of the I sample and in

the II sample, whereas it is 4 in the second wave of the I study. It is likely, that in the

first wave some of the students had to restrict themselves to exactly 7 names, whereas

some felt obliged to include more people than they are actually tightly connected to,

which may cause underestimation of the importance of some links and overestimation

of the others. Lower average number of friends in the second period may be caused by

particularities of the survey construction as well as by the real trends in the network

development.

The survey design is different for three networks. The first wave of the I study asks

for no more than 7 friends and has 7 lines for the names, which was ignored by approx-

imately 2% of the sample, the second wave of the I study does not put any restriction

on the number of friends, although it has 7 lines as well, the short study says explicitly,

that a number of friends can be unlimited, but has 15 lines. Therefore, the survey design

may influence estimation results from the I survey analysis, hence the analysis of the II

study with its unchanged question design can be helpful as a robustness check.

3.3 Network characteristics

In this section, I will discuss the validity of the identifying assumptions in a framework

of the I survey.

Network stability.

Figure 1 visualizes the whole networks for the first wave (left) and for the second
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wave (right). Red nodes are females, blue - males, the size of the nodes is proportional

to the overall degree of the node. It can be observed from this figure that two networks

differ. For example, two clusters in the bottom part of the graph are not connected in

the first wave, whereas there are several edges between them in the second wave.
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(b) Wave 2.

Figure 1: Networks.

More formal justification of the variability of the network is presented in Table 3.

Quite a lot of variation can be observed: around 11-12% of the students reported exactly

the same set of friends. However, the share of completely new networks varies with

gender. Females have only 5% of completely new networks. Hence, females tend to be

more persistent in forming and retaining the links.

Table 4 provides more evidence of the network variation: only around 16% of the links

survived after the first period, and around 78% of the links formed in the second period

are new.

Table 3: Overlap of network partners

Network statistics Full sample Male Female

Complete overlap 11.49 11.21 11.89

No new links 24.66 22.43 26.49
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Partial overlap 65.20 46.73 77.30

Complete turnover 12.16 24.30 5.41

Observations 296 107 185

Note: Percentages of 1st, 3rd, and 4th rows do not add up to 100%, because there are new observations

in the 2nd wave, for which we do not observe the network in the 1st wave

Table 4: Some network characteristics

Network statistics Definition 1 year 2 year

Average indegree Average number of ingoing

ties

4.96 (2.73) 3.93 (2.53)

Average outdegree Average number of outgoing

ties

4.96 (2.01) 3.93 (2.2)

Density Proportion of existing ties in

the network

0.015 0.014

Reciprocity Proportion of ties which are

reciprocated

0.639 0.636

Transitivity The ratio of the triangles and

the connected triples in the

graph

0.454 0.443

Share of the links that remained from the 1st

wave in total amount of links of the 2nd wave

- 22.61%

Share of the links that remained from the 1st

wave in total amount of links of the 1st wave

16.57% -

Transitivity.

Table 4 describes several characteristics of the networks in the sample. The transi-

tivity is measured by the shares total amount of connected triangles in the whole graph.

So in more than 50% of all possible sets of three students, at least, one link is missing.

Figure 2 shows the subgraph of the network to demonstrate the existence of in-

transitive triads in both of the samples. For example, in wave 1 the following triad is

intransitive: 717 → 694, 694 → 779, but 717 9 779. Other examples of intransitive

triads are: 939→ 693→ 778, 693→778→ 878 in the first wave and 939→ 779→ 694,
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779→ 694→ 717 in the second wave, and some more.

732
717

878

778
693

939

694

779

(a) Wave 1.

732
717

878

778 693

939

694

779

(b) Wave 2.

Figure 2: Subgraph of the network

The characteristics of the networks (see Table 4) also clearly suggest that the network

is directed and cannot be assumed to be indirected since only around 60% of the links

are reciprocal. Also, the networks are sparse with the density of the links around 1.5%.

3.4 Descriptive analysis

People often tend to connect based on similarities in their observed and unobserved

characteristics. Table 5 summarizes the findings on the affinity of the peers in the

network. Most of the peers are coming from the same group, more than 84% and almost

all friends are from the same department. The network can in principle be divided into

four smaller networks.

Females are more likely to connect with peers of the same gender, whereas males have

more diverse networks. Gender difference also exists in the probability of connecting to

the dormitory mates: males are more likely to connect. The share of the friends with

the same living conditions is, however, decreasing with time, suggesting that some other

characteristics matter more for creating and sustaining the links.

Future plans on average seem not to matter a lot for the link formation: friends with

the same plans for the future education are about 50% of the peers. This share could

probably be higher, if the students were asked about there plans later in the course of
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their studies, and not during the first year. However, given the student’s willingness

to do Master, her peers are as well more oriented on continuing the studies after the

Undergraduate level.

Table 5: Characteristics of reported networks links by sex

Variables
1st wave 2nd wave

Male Female All Male Female All

Average size 4.53 5.19 4.96 3.57* 4.18* 3.93*

Average size (with out of sample links) 5.22 5.78 5.58 4.29* 4.96* 4.69*

Study group/department relation (% of network partners)

Same group 84.17 87.23 86.76 87.21 89.89 88.78

Same department 98.54 99.21 98.99 97.54 99.39 98.95

Individual characteristics of network partners(% of network partners)

Same gender 64.05 81.97 76.18

Same working status 62.43 70.33 67.78 50.74 60.95 56.41

Same education of mother 61.75 66.84 65.19 - - -

Same education of father 56.45 50.08 52.14 - - -

Same living conditions 57.59 46.71 50.23 50.97 39.61 43.33

Same living conditions (dorm/not) 84.14 76.23 78.79 74.27 70.55 72.16

Future plans (% of network partners)

Same plans for Master 54.44 57.37 56.41 - - -

Same plans for Doctorate 47.18 47.32 47.27 - - -

Subsample of planning to do Master:

Same plans for Master 68.34 72.42 74.46 - - -

*the network data in the 2nd wave is truncated at 7 friends

More than 1/3 of all links in the first wave are links to the students with retakes (37%).

The share of the links to the students with retakes in the first period in the total amount

of second wave links is slightly smaller: 33%. It might be caused by the intention of

students to improve their peer group and connect to peers with higher outcomes. The

average amount of the friends with retakes in the first period is 1.83 while it is lower

for the second period: only 1.25. The average amount of peers with exam retakes for

the subsample of all students that have at least one peer with retake is higher than

the average of the full sample and is equal to 2.5. For the same students in the second

wave, the average number of peers who had exam retakes in the first period is now

much lower: 1.55. It can be suspected that the decrease in this value may be partially

explained by the readjustments of the network towards better connections. Moreover,
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for the same subsample, the average number of peers with retakes in the second period

is even lower: 1.37. Interestingly, some of those, who didn’t have any friends with

retakes in the first period, connected to new peers that had the retakes in the second

period, the average number of such friends is only 0.35 though, but the average number

of friends with retakes in the next period is 0.57. So the changes in the network are

leading to the improvements as well as worsening of the new peer group. These findings

are summarized in the Table 6.

Table 6: Distribution of retakes

Links wave 1,

retakes wave 1

Links wave 2,

retakes wave 1

Links wave 2,

retakes wave 2

Share of retakes links in all links 36.99% 32.99% 29.15%

Average amount of friends with retakes 1.83 1.25 1.15

Subsample with retakes of friends
2.5 1.55 1.37

Average amount of friends with retakes

Subsample no retakes of friends
0 0.35 0.57

Average amount of friends with retakes

Observe that students in the studied framework tend to connect to peers, having

higher average grades than the students themselves, for the full sample as well as for the

samples with and without retake friends. Students, who do not connect to peers with

retakes, are performing better than those, whose friends are having retakes. However,

the improvements in the performance in the future are not significant, with the changes

in the performance of the students without peers’ retakes being slightly higher.

Table 7: Average grades in samples and subsamples

Full sample With retakes of friends No retakes of friends

Average grade
7.04 6.98 7.37

(0.99) (0.96) (0.98)

Average grade of friends
7.18 7.03 7.68

(0.65) (0.63) (0.49)

Sample size 320 234 86

Average grade next period
7.13 7.02 7.44

(1.14) (1.15) (1.07)

Sample size 297 217 80

It is not possible to distinguish between the predicted and unexpected components
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of retakes by simply looking at the data. Therefore, the deeper econometric analysis

is needed to make conclusions about the existence and the magnitude of the effect of

unpredicted shock.

4 Results

4.1 Main specification

I use the following variables for the main specification of the model:

Outcome: average weighted grade of the student in the corresponding period. The

grades are summed up weighted by the amount of the credits assigned to the

particular course.

Retakes: indicator of at least one retake in the first period.

Initial ability, measured as the sum of mandatory Unified State Examinations (math-

ematics and Russian) plus the sum of cross-products between these USE results

and a dummy of winning any relevant Olympiads.

Controls: time-invariant, such as gender, socio-economic background like a dummy of

parental higher education, a dummy of having a single parent before entering the

university and dummy for siblings; and a set of dummies for three departments

with law department serving as a base.

Controls: time-varying, such as tuition, which is mostly time-invariant, but some rare

students change the type of tuition, working status (dummy for not working versus

any type of job) and living conditions (dormitory versus everything else).

Descriptive statistics for these variables is provided in Table B.3 of Appendix B. It can

be observed that the average changes in the time-variant variables are rather modest, as

well as the changes in the performance. However, the average grade has higher standard

deviation and spread in the second period.

Table 8 summarizes some of the findings of the estimation of the model without

correlated effects. Note that the sample size is smaller than was discussed in the data

description, due to the absence of some students in one of the waves. And it is critical

to have the information in both waves for each of the students to estimate the effect.
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Table 8: Estimation of main specification

Variable (1) (2) (3) (4) (5)

Constant -0.1521 -0.1840 -0.0482

Unexpected Retake -0.2638 -0.2143 -0.3077• -0.2064 -0.3907*

Endogenous effect, period 1 -0.0307 -0.0425 -0.0317 0.0908* 0.0614*

Endogenous effect, period 2 0.0205 0.0085 0.0218 0.0419 0.0306

Time-variant own controls

Tuition, w1 0.0208 0.0102

Tuition, w2 -0.0912 -0.1518

Working status, w1 -0.0664 -0.0719 -0.0716

Working status, w2 0.1381• 0.1147* 0.1346•

Living in dorm, w1 0.1061

Living in dorm, w2 0.1651

Network’s controls

Economics, w1 0.2417 0.1568 0.2692 -0.0732

Economics, w2 -0.4681** -0.4367** -0.4513** -0.5893***

Management, w1 0.5409* 0.5712*

Management, w2 0.1790 0.1996

Working status, w1 -0.7352* -0.5420**

Working status, w2 -0.0497 -0.1903

HE of father, w1 0.4010•

HE of father, w2 0.0006

Sample size 250 250 250 250 250

BIC -216.68 -225.24 -226.51 -225.79 -196.71

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

It can be observed that for the full sample the estimator of the effect of the unpre-

dicted component of retakes is negative but in most cases insignificant. The magnitude

of the effect in specification (5) suggests that if a friend of some student had a retake

during the first year, which this student couldn’t predict at all, the difference between

the average grade of year 2 and the average grade of year 1 of the student will be on

average 0.05-0.39 lower, than in the case the student expected the retake of a friend,

depending on the total number of friends. For example, the median student on average

improves her grades in the second period in comparison to the first by 0.24, which is

2.4% of the maximum grade. The presence of unpredicted retake of the friend, other
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things equal, may leave the average grade in the second period at the same level or even

decrease it up to 1.5% of maximum grade, changing the direction of the dynamics and,

moreover, putting the student on average 5-25 positions lower in the overall students’

rating, falling lower with less friends.

Note, that there is a highly significant difference between the economics and other

departments for most of the specifications. On average, students of economics depart-

ment have -0.5 lower difference of grades, which suggest the overall lower grades of the

economics department in the second year. This evidence indicates the necessity of using

the model with correlated effects or treating the departments separately by splitting the

full sample.

Discussing the results for those, who had their own retakes, versus those, who did not

is the other possible way to improve the estimation results.

The further analysis is given in the next subsections, where I present the results of

estimation in the subsamples, of the model with correlated effects, as well as the esti-

mation with a possibly improved network. However, it is worth pointing out, that the

sample size for the main specification is 250 students, which may be not sufficiently

big to capture the desired effect, and the results of the estimation in the subsamples

should be treated with even more care, since with the lower sample size the asymptotic

properties of the proposed estimator may suffer.

4.2 Connection to one’s own retake

I first report the results for the subsamples of students with and without own retakes.

It can be suggested that the students that had their own retake may, in general, be

connected to worse peers. Therefore, having friends with retakes might lower the perfor-

mance even further, whereas the friends’ retakes are more likely to have either no effect

or even positive influence for the better students.

Table 9: Presence of own retake

Variable (1), yes (2), yes (1), no (2), no

Constant 0.2602 0.1027 -0.1001 -0.3734*

Unexpected Retake -0.2092 -0.1788 0.0246 0.0586

Endogenous effect, period 1 -0.0237 -0.0539 0.0352 -0.0262

Endogenous effect, period 2 0.0756** 0.0671• 0.0429 0.0577•

Time-variant own controls

Tuition, w1 -0.1612 0.0032

Tuition, w2 -0.1834 -0.2685
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Working status, w1 -0.1175 -0.0713

Working status, w2 0.1379 0.1192

Network’s controls

Economics, w1 -0.1964 -0.0474 0.0616 0.1081

Economics, w2 -0.9973*** -0.9131*** -0.3932 -0.5344•

Management, w1 0.3098

Management, w2 -0.0338

Working status, w1 -0.5632**

Working status, w2 -0.2305

HE of father, w1 0.6306• 0.3753

HE of father, w2 -0.3627 -0.4972•

Dummy siblings, w1 0.7689***

Dummy siblings, w2 0.2113

Sample size 83 83 167 167

BIC -336.10 -348.14 -288.34 -290.82

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

Table 9 gives hints that the outcomes are influenced differently by the peers in case

of presence of one’s own retake and in the case when the student passed all the exams

from the first attempt. First of all, unexpected retake has an insignificant and negative

effect of higher magnitude in case of own retake than without own retakes. So, when

students in the network have retakes together, they will less likely improve in the future.

It may be partially explained by the worse peer group, and partially by the fact that

fewer friends are able to help to catch up with the courses after retakes. It can also be

observed that the endogenous effect changes the sign, from negative to positive, and is

more significant for students with own retakes, which may suggest that the students,

especially the ones with their own retake tend to seek for the better peers in the future.

However, the data does not provide evidence that the willingness to connect to better

peers is coming from the discussed shock, therefore, the changes may be considered as a

natural learning process.

4.3 Effects in different departments

In this subsection, I discuss the results for subsamples of different departments. I

present the results for two departments: economics and management. The economics

department showed significantly different results in comparison to the others in the main

specification, and the management department is quite similar to the economics in the
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curriculum and direction of study.

Table 10: Departments

Variable (1), Econ. (2), Econ. (3), Man. (4), Man.

Constant -0.5228* -0.2265 0.5614* 0.7032**

Unexpected Retake -0.4375 -0.4794 0.4043 0.3943

Endogenous effect, period 1 -0.0426 -0.0150 0.2884*** 0.3927***

Endogenous effect, period 2 0.0334 0.0544 0.1635** 0.2164**

Time-variant own controls

Tuition, w1 0.2538 -0.4889

Tuition, w2 -0.0479 -0.7778*

Working status, w1 -0.0888 0.0054

Working status, w2 0.2119 0.0880

Network’s controls

Ability, w1 -0.0056* -0.0062**

Ability, w2 -0.0049** -0.0048**

Gender, w1 1.0102*

Gender, w2 0.2889

Working status, w1 -0.6228 -0.6353*

Working status, w2 -0.5707 -0.4209

HE of mother, w1 -0.4308 -0.7535*

HE of mother, w2 -0.3144 -0.5867*

Dormitory, w1 -1.5248*** -0.8094•

Dormitory, w1 -0.9558** -0.8145*

Dummy siblings, w1 0.4005

Dummy siblings, w2 -0.3945

Sample size 82 82 68 68

BIC -305.45 -300.61 -456.68 -471.57

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

As can be seen from Table 10, the discussed effect is surprisingly different for two

departments. While specification (1) for the economic department have the negative

effect of the unexpected retake, the same effect in the specifications for management is

positive. However, estimators are not significant. Both subsamples have a small number

of observations, which can cause the low significance of the effect of the interest, and the

results should be treated with caution. It is possible to eliminate the differences between
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the departments and estimate the full sample, by exploring the model with correlated

effects.

4.4 Estimation in presence of correlated effects

In this Subsection, I would like to discuss the results of the estimation proposed in

Section 2.4.2. Simple estimation in the presence of correlated effects might lead to the

biased results. Next table presents the summary of results, judging from which I can

then compare the two specifications: with and without correlated effects.

Table 11: Estimation of specification with correlated effects

Variable (1) (2) (3) (4) (5)

Unexpected Retake -0.4144• -0.3899• -0.3817• -0.3817• -0.4616*

Endogenous effect, period 1 -0.0361 -0.0526 -0.0378 -0.0379 0.0186

Endogenous effect, period 2 0.0143 0.0016 0.0544 0.0544 0.0461

Time-variant own controls

Tuition, w1 0.0834 0.0411

Tuition, w2 -0.1011 -0.1292

Working status, w1 -0.0382 0.0266 0.0411 0.0590

Working status, w2 0.1077 0.1355• -0.1292 0.0991

Living conditions, w1 -0.1323

Living conditions, w2 0.2102

Network’s controls

HE of mother, w1 -0.6547 -0.5532 -0.5785 -0.5785 -0.6717

HE of mother, w2 -0.2011 -0.1541 -0.3396 -0.3396 -0.3875

HE of father, w1 0.5325 0.5789 0.4663 0.4663

HE of father, w2 -0.0167 0.0378 -0.0831 0.3817

Sample size 250 250 250 250 250

BIC -183.89 -185.56 -195.56 -192.25 -197.99

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

Controlling for correlated effects leads to more significant and persistent value of

negative effect of unexpected retakes than in the main specification. The magnitude

of the effect in specification (5) suggests that if a friend has a retake during the first

year, which the student couldn’t predict at all, this will make the difference between the

average grade of year two and the average grade of year one for this student on average

0.46 lower, if the student has only 1 friend, and approximately 0.065 lower, if the student
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has 7 friends. The maximum of the grades is 10 so that the person lose almost 5% of

the maximum grade when the network includes friends with retakes.

4.5 Additional analysis

4.5.1 Improving network

As it was mentioned before, students were asked to name up to 7 friends from their

cohort, although some named more than 7. However, it is reasonable to assume that all

named friends are not equal for the person. I introduce two possible ways to account for

better friends so that the quality of the network can be improved.

First, I assume that the friends named among the first are more important than the

others, since they were remembered earlier, and the best friends can’t be named last. I

reduced the network, only taking up to three named first students. I conducted analy-

sis for both models with and without accounting for correlated effects. The suggested

improvement of the network didn’t, however, increased the significance of the results12.

The effect of an unpredicted component of friends’ exam retake is not significantly dif-

ferent from zero. Therefore, it might be reasonable to conclude that the unexpected

negative or positive performance of the whole network of friends is more important for

the future performance of students than the performance of only best friends.

Second, I observe that about 60% of the network is reciprocal, so I conduct similar

analysis limiting the network to only reciprocal connections. This again does not bring

any improvement in terms of the significance of the studied effect. It seems that the

students’ performance is shaped not only by their mutual friends, but although by those,

who don’t consider them as friends, but are considered as friends by the students. These

students may be viewed as a sort of role models, and therefore, are important to be

taken into account.

Thus, the initial full network is able to capture the effect of unexpected shock better

than the versions of the network, considered initially as possible improvements.

4.5.2 Important classes

The further analysis divides the subjects, studied by the students in the sample, into

two parts: more important and less important. All subjects have the corresponding

amount of ECTS credits, from 0 to 8 with average around 2.5. For the analysis, I set the

threshold of 4 ECTS points. However, some subjects have several exams, for example,

Mathematical Analysis, and the weight of some of the exam in the series can be lower

12The detailed results are presented in Appendix B
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than 4, but, at least, one exam has ECTS higher than 4. In these cases, I am including

all the exams of the series in the sample of important exams. This restricts the set of

the students with retakes to 2/3 of the initial set.

Table 12 provides the results of the analysis in the new setting for the model without

correlated effects.

Table 12: Estimation with retakes for classes with ECTS 4 and higher

Variable (1) (2) (3) (4) (5)

Constant -0.2176 -0.1670 -0.2005

Unexpected Retake -0.4912** -0.5484*** -0.5158** -0.4907** -0.5564**

Endogenous effect, period 1 0.1072* -0.0211 -0.0160 0.1076* -0.0158

Endogenous effect, period 2 0.0378 0.0279 0.0284 0.0401 0.0307

Time-variant own controls

Tuition, w1 0.0417 0.0430 0.0530

Tuition, w2 -0.0861 -0.0575 -0.0830

Working status, w1 -0.0568 -0.0570 -0.0616

Working status, w2 0.1488* 0.1494* 0.1469*

Living conditions, w1 -0.0222 -0.2673

Living conditions, w2 0.0312 -0.1808

Network’s controls

Economics, w1 -0.1032 0.1652 0.1257 -0.1129 0.1387

Economics, w2 -0.6177*** -0.5279** -0.5466** -0.6240*** -0.5411**

Management, w1 0.4322 -0.4049 0.4159

Management, w2 0.1209 0.1045 0.1127

Working status, w1 -0.8120* -0.8186**

Working status, w2 -0.0074 -0.0102

Sample size 250 250 250 250 250

BIC -215.86 -220.76 -220.81 -226.98 -230.99

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

It can be observed that a lot of the results resemble the results for the model with

all retakes, however, the effect of the unpredicted retake is more significant when only

important classes are taken into consideration. The sign of the estimator remains neg-

ative but it gains much more significance, suggesting the different effect that different

classes may have on the future performance of the network. The results also suggest the

higher magnitude than in the initial model. Now, the friend’s unexpected retake of the
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important class may make the difference between average grades in two periods bigger

and reduce the average grade of the second year additionally by up to 0.5, which equals

to 5% of the maximum grade.

This result is expectable. For example, the new set of retakes does not include the

class of Discrete Mathematics in the Economics department but includes Mathematical

Analysis. These two classes differ not only in the amount of ECTS but also in the length

and importance for the further classes. Mathematical Analysis is studied throughout the

whole length of the first year, whereas Discrete Mathematics only for one term. More-

over, the former introduces a lot of methods used later in the core classes of the higher

years, such as Micro or Macro, while the latter might be considered to contribute less in

future studies. The full list of classes, which were retaken at least once and the subset

of more important classes are presented in Appendix B.

The significance of a dummy of the Economics department suggests that the model

with correlated effects may be used, as in the model with the full set of retakes. Surpris-

ingly, the estimator of the effect of the unexpected retake in the model with correlated

effects loses the significance once I restrict the set of the retakes.

5 Conclusion

The paper discusses the spread of the unpredicted shock across the network of friends

in the university environment using the newly introduced dynamic peer effect model in

the presence of endogenous shock.

Exam retakes play an important role in determining the future of the student. How-

ever, it was shown that the unpredicted component of the retake may influence not only

the students with a retake but also the whole network of friends. In most of the cases

the effect is not very significant, but still should not be ignored. When the threshold of

failing the exam is too high, some students, viewed by their friends as high-achievers,

are likely to fail. This anticipation mistake leads to the decrease of the average grades

of the whole friendship network.

The ideas explored in this paper can be further extended to the analysis of the net-

works in other settings, not only for educational outcomes. The method is applicable,

when the endogenous shocks might have the longitudinal effect on the network outcomes,

such as, for example, a treatment that for some reasons cannot be randomized, or con-

versational networks in developing communities, etc.

I have presented the results for identification of such models, that allow disentangling

the effect of unpredicted shock on the future performance. The findings of the paper
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suggest that it is sufficient to assume time-variability of networks together with the ex-

istence of intransitive triads (or distances of length three, depending on the correlated

effects assumption) in each of the states of the network for the similar models. Intransi-

tive triads are guaranteed by the presence of two students only connected via the third

common friend but not directly. The characteristics of friends of the friends don’t influ-

ence directly the outcome, and, therefore, can be used as an instrumental variable for

the friends’ outcome. Such instruments can, therefore, deal with endogeneity issue. The

group of new friends, different from the group of old friends, let the model capture the

changes, happening due to the shock.

The procedure developed in the paper is shown to yield consistent estimators of the

individual characteristics, endogenous peer effect and effect of unpredicted shock.

All theoretical findings are tested on the dataset of university students, connected via

the friendship network. Most of the empirical evidence suggest that the unpredicted

exam retakes of the friends will have a negative effect on the changes of the performance

of students. This effect is more prominent for students with own retakes and for students

in the Economics department. The higher significance of the estimators in the model

with correlated effects gives evidence of the presence of unobserved homophily that influ-

ences link formation. Change of sign of endogenous effect for students with own retakes

shows the importance of further exploration of the problem and improvement of the

model by inclusion of the link formation mechanism.
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Appendix

A. Main proofs

Regularity conditions (adaptation of Lee (2003)):

Assumption 1. The matrices (I − β1G1) and (I − β2G2) are nonsingular

Assumption 2. The row and column sums of the matrices G1, G2, (I − β1G1)−1 and
(I − β2G2)−1 are uniformly bounded in absolute value.

Assumption 3. The elements of the matrices X1 and X2 are uniformly bounded in
absolute value

Assumption 4. The error terms {νi : 1 ≤ i ≤ n} are identically distributed. Further-
more, they are distributed (jointly) independently with E[νiX

1
i ] = 0 and E[ν2i ] =

σν < ∞. Additionally, they are assumed to possess finite fourth moments. The
error terms {∆εi : 1 ≤ i ≤ n} are identically distributed. Furthermore, they are
distributed (jointly) independently with E[∆εi] = 0 and E[∆ε2i ] = σε1 + σε2 < ∞.
Additionally, they are assumed to possess finite fourth moments

Assumption 5. The limit J = limn→∞
1
nZ

TZ exists and is nonsingular.

Assumption 6. The limit J̄ = limn→∞
1
nZ̄

T
Z̄ exists and is nonsingular.

Assumption 7. Step 1. The initial estimator β12SLS of β1 is na-consistent for some
a > 0. The initial estimators α1

2SLS , γ12SLS and δ12SLS are consistent estimators of
α1, γ1 and δ1, respectively. Step 2. The initial estimators β1,2SLS and β2,2SLS of
β1 and β2 are nb-consistent for some b > 0. The initial estimators α1,2SLS , α2,2SLS ,
γ1,2SLS , γ2,2SLS , δ1,2SLS and δ2,2SLS are consistent estimators of α1, α2, γ1, γ2, δ1
and δ2, respectively.

Proof of Lemma 1.

The structural form equation:

P (retakei) = α1 + β1
∑
j 6=i

G1
ijy

1
j + γ1X1

i + δ1
∑
j 6=i

G1
ijX

1
j + νi, E[νi|X] = 0

can be rewritten in the reduced form in the following manner:

PR = α1i+ β1G1y1 + γ1X1 + δ1G1X1 + ν, E[ν|X1] = 0

PR = α1i+ β1G1y1 + (γ1I + δ1G1)X1 + ν, E[ν|X1] = 0

Taking conditional expectations:

E[PR|X1] = α1i+ β1G1E[y1|X1] + (γ1I + δ1G1)X1
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Note that y can be expressed in terms of peer effect model as the one used for the
probability of retakes:

y1i = α0 + β0
∑
j 6=i

G1
ijy

1
j + γ0X

1
i + δ0

∑
j 6=i

G1
ijX

1
j + ξi, E[ξi|X] = 0

with reduced form:

y1 = α0i+ β0G
1y1 + (γ0I + δ0G

1)X1 + ξ, E[ξ|X] = 0

Then following steps of Bramoullé et al. (2009):

y1 = α0(I−β0G1)−1 + (I−β0G1)−1(γ0I+ δ0G
1)X1 + (I−β0G1)−1ξ, E[ξ|X] = 0

Using (I − β0G1)−1 =
∑∞

k=0 β
k
0(G1)

k
:

y1 = α0(I − β0G1)−1 + γ0X
1 + (γ0β0 + δ0)

∞∑
k=0

βk0(G1)
k+1
X1 +

∞∑
k=0

βk0(G1)
k
ξ

And the expected mean friends’ groups’ performance conditional on X1 can be written
as:

E[G1y1|X1] = α0(I − β0G1)−1 + γ0G
1X1 + (γ0β0 + δ0)

∞∑
k=0

βk0(G1)
k+2
X1

As was proven in Bramoullé et al. (2009), if γ0β0+δ0 6= 0 and I,G1 and (G1)2 are linearly
independent, the social effects are identified. So this expression can be plugged-in into
the reduced form of the equation for the probability of retake.

E[PR|X1] = α1i+ β1(α0(I − β0G1)−1 + γ0G
1X1 + (γ0β0 + δ0)

∞∑
k=0

βk0(G1)
k+2
X1) +

+(γ1I + δ1G1)X1 =

= (α1I + β1α0(I − β0G1)−1)) + β1(γ0β0 + δ0)

∞∑
k=0

βk0(G1)
k+2
X1 + (γ1I + (β1γ0 + δ1)G1)X1

or

E[PR|X1] = α1I+β1(α0(I−β0G1)−1+β1(I−β0G1)−1(γ0I+δ0G
1)G1X1+(γ1I+δ1G1)X1

Now consider two sets of structural parameters (α1, β1, γ1, δ1) and (α̃1, β̃1, γ̃1, δ̃1) lead-
ing to the same reduced form. It means that:

α1I + β1α0(I − β0G1)−1 = α̃1I + β̃1α0(I − β0G1)−1

α1I − α1β0G
1 + β1α0I = α̃1I − α̃1β0G

1 + β̃1α0I

40



(α1 − α̃1)I + (β1α0 − β̃1α0)I − (α1β0 − α̃1β0)G
1 = 0

(α1 − α̃1 + (β1 − β̃1)α0)I = (α1 − α̃1)β0G
1

and:

β1(I−β0G1)−1(γ0I+δ0G
1)G1+(γ1I+δ1G1) = β̃1(I−β0G1)−1(γ0I+δ0G

1)G1+(γ̃1I+δ̃1G1)

β1(γ0I+δ0G
1)G1+(I−β0G1)(γ1I+δ1G1) = β̃1(γ0I+δ0G

1)G1+(I−β0G1)(γ̃1I+δ̃1G1)

β1γ0G
1 + β1δ0(G

1)2 + (γ1I − (β0γ
1 − δ1)G1)− β0δ1(G1)

2
) = β̃1γ0G

1 + β̃1δ0(G
12) +

+(γ̃1I − (β0γ̃
1 − δ̃1)G1)− β0δ̃1(G1)

2
)

γ1I+(β1γ0+β
1δ0−β0γ1+δ1)G1−β0δ1(G1)

2
= γ̃1I+(β̃1γ0+β̃

1δ0−β0γ̃1+δ̃1)G1−β0δ̃1(G1)
2

(γ1− γ̃1)I+((β1− β̃1)γ0 +(β1− β̃1)δ0−β0(γ1− γ̃1)+δ1− δ̃1)G1 +β0(δ̃
1−δ1)(G1)

2
= 0

Now let I,G1 and (G1)2 be linearly independent. Then the above equality holds only if
all three coefficients are 0:

γ1 − γ̃1 = 0

(β1 − β̃1)γ0 + (β1 − β̃1)δ0 − β0(γ1 − γ̃1) + δ1 − δ̃1 = 0

β0(δ̃
1 − δ1) = 0

If β0 6= 0 and γ20 + δ20 6= 0, two sets of coefficients (α1, β1, γ1, δ1) and (α̃1, β̃1, γ̃1, δ̃1) are
equivalent. Note that the restrictions on the coefficients of the peer effect model suggest
that the model has an endogenous peer effect and the performance depends on own set
of observed characteristics, or on peers observed characteristics, or on both. These re-
quirements are natural for the peer effect model and therefore, the identification result
is achieved. �

Proof of Lemma 2. (Identification, Step 2, no correlated effects)

Recall the second step equation:

∆yi = (α2 − α1) + β2
∑
j 6=i

G2
ijy

2
j − β1

∑
j 6=i

G1
ijy

1
j + δ̃URi + γ2X

2
i − γ1X1

i +

+δ2
∑
j 6=i

G2
ijX

2
j − δ1

∑
j 6=i

G1
ijX

1
j + ∆εi

It can be rewritten in the reduced form as following:

∆y = (α2 − α1)i+ β2G
2y2 − β1G1y1 + δ̃UR+ γ2X

2
TV − γ1X

1
TV + δ2G

2X2−

−δ1G1X1 + ∆ε, with UR defined as discussed in Section 2 and E[∆ε] = 0
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This can be further modified in the following manner:

E[∆y|X2] = (α2 − α1)i+ β2G
2E[y2|X2]− β1G1E[y1|X2] + δ̃E[UR|X2]+

+γ2X
2
TV − γ1X

1
TV + δ2G

2X2 − δ1G1X1

with

E[y1|X2] = (I − β0,1G1)−1α0,1 + (I − β0,1G1)−1(γ0,1I + δ0,1G
1)E[X1|X2] =

= (I − β0,1G1)−1α0,1 + (I − β0,1G1)−1(γ0,1I + δ0,1G
1)X1,

since X1 is already known by the time X2 is revealed, therefore, the latter cannot add
any new information.

Also:

E[y2|X2] = (I − β0,2G2)−1α0,2 + (I − β0,2G2)−1(γ0,2I + δ0,2G
2)X2

Note that UR is also defined at the first period, hence, the new information in X2 will
not anything new for the expected value of the UR, hence E[UR|X2] = UR.

Also notice than in principle coefficients in the model in differences α1, β1, γ1, δ1, α2, β2, γ2, δ2
can be different from the corresponding coefficients in the single period peer effect mod-
els α0,1, β0,1, γ0,1, δ0,1, α0,2, β0,2, γ0,2, δ0,2. This can be due to the unaccounted in single
period model fixed effects that can be eliminated in the model in differences and due to
the presence of the shock in the model, which can take some of the effect, that would be
otherwise attributed towards endogenous or exogenous effect.

Then, letting α = α2 − α1

E[∆y|X2] = αi+β2G
2(I−β0,2G2)−1(α0,2+(γ0,2I+δ0,2G

2)X2)−β1G1(I−β0,1G1)−1(α0,1+

(γ0,1I + δ0,1G
1)X1) + δ̃UR+ γ2X

2
TV − γ1X

1
TV + δ2G

2X2 − δ1G1X1

First, if G1 = G1, then δ2 and δ1 are identified only partially, for time-variant
variables of X1 and X2 respectively. This assumption can be relaxed, if we let the
coefficients of the single period coincide with the coefficients of the coefficients of the
model in differences. Then, however, the following assumption need to be made δ̃ = 0,
meaning that the shock has no effect on the outcome, which is not true in the setting of
the model of the paper. Hence, G1 = G1 is one of the identifying assumptions for the
second step model.

Next, I follow similar steps to the proof of Lemma 1. Consider two sets of the param-
eters leading to the same reduced form, (α1, β1, γ1, δ1, α2, β2, γ2, δ2, δ̃) and (α̃1, β̃1, γ̃1, δ̃1,

α̃2, β̃2, γ̃2, δ̃2,
˜̃
δ). I do not include the single-period parameters, since their identification

is achieved separately, if I,G1, (G1)2 are linearly independent and if I,G2, (G2)2 are
also linearly independent. Then:

αI + β2G
2(I − β0,2G2)−1α0,2 − β1G1(I − β0,1G1)−1α0,1 =
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= α̃I + β̃2G
2(I − β0,2G2)−1α0,2 − β̃1G1(I − β0,1G1)−1α0,1

β2G
2(I − β0,2G2)−1(γ0,2I + δ0,2G

2) + (γ2I + δ2G
2) =

= β̃2G
2(I − β0,2G2)−1(γ0,2I + δ0,2G

2) + (γ̃2I + δ̃2G
2)

β1G
1(I − β0,1G1)−1(γ0,1I + δ0,1G

1) + (γ1I + δ1G
1) =

= β̃1G
1(I − β0,1G1)−1(γ0,1I + δ0,1G

1) + (γ̃1I + δ̃1G
1)

δ̃ =
˜̃
δ

Note, that I added time invariant own exogenous variables to the vectors X1
TV and

X2
TV . Since they are not in the model, zeros are assumed on the additional elements of

γ1 and γ2.
The third equation can be further simplified as following:

γ1I + (δ1 − γ1β0,1 − β1γ0,1)G1 + (β1δ0,1 − δ1β0,1)G1)2 =

= γ̃1I + (δ̃1 − γ̃1β0,1 − β̃1γ0,1)G1 + (β̃1δ0,1 − δ̃1β0,1)G1)2

Then, if I,G1, (G1)2 are linearly independent, the coefficients in front of these three
matrices are 0:

γ1 − γ̃1 = 0

δ1 − γ1β0,1 − β1γ0,1 = δ̃1 − γ̃1β0,1 − β̃1γ0,1, or

(δ1 − δ̃1)− (γ1 − γ̃1)β0,1 + (β1 − β̃1)γ0,1 = 0

β1δ0,1 − δ1β0,1 = β̃1δ0,1 − δ̃1β0,1, or

(β1 − β̃1)δ0,1 − (δ1 − δ̃1)β0,1 = 0

Now, if β0,1 6= 0 and γ20,1 + δ20,1 6= 0, the two sets of the coefficients, (γ1, δ1, β1) and

(γ̃1, δ̃1, β̃1), coincide.
Similar argument is valid for the coefficient in front of X2, hence (γ2, δ2, β2) and

(γ̃2, δ̃2, β̃2), also coincide, when I,G2, (G2)2 are linearly independent and β0,2 6= 0 and
γ20,2 + δ20,2 6= 0.

The other two equalities lead then automatically to α = α̃ and δ̃ =
˜̃
δ without any

additional assumptions. Hence, the identification is achieved under the conditions of
linear independence of I,G1, (G1)2 and I,G2, (G2)2 and G1 6= G2 and mentioned
assumptions on the coefficients. �
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Proof of Lemma 3.

The structural form equation:

P (retakei)−
∑
j 6=i

G1
ijP (retakej) = β

∑
j 6=i

G1
ij [y

1
j −

∑
k 6=j

G1
jky

1
k] + γ[X1

i −
∑
j 6=i

G1
ijX

1
j ] +

+δ
∑
j 6=i

G1
ij [X

1
j −

∑
k 6=j

G1
jkX

1
k ] + [ηi −

∑
j 6=i

G1
ijηj ], E[ηi|X1] = 0

can be rewritten in the reduced form in the following manner:

(I−G1)PR = β(I−G1)G1y1+γ(I−G1)X1+δ(I−G1)G1X1+(I−G1)η, E[η|X1] = 0

(I−G1)PR = β(I−G1)G1y1 +(γI+ δG1)(I−G1)X1 +(I−G1)η, E[η|X1] = 0

Taking conditional expectations:

E[(I −G1)PR|X1] = β(I −G1)G1E[y1|X1] + (γI + δG1)(I −G1)X1

Note that y can be expressed in terms of peer effect model as the one used for the
probability of retakes:

y1i −
∑
j 6=i

G1
ijy

1
j = β0

∑
j 6=i

G1
ij [y

1
j −

∑
k 6=j

G1
jky

1
k] + γ0[X

1
i −

∑
j 6=i

G1
ijX

1
j ] + δ0

∑
j 6=i

G1
ij [X

1
j −

−
∑
k 6=j

G1
jkX

1
k ] + [ξi −

∑
j 6=i

G1
ijξj ], E[ξi|X1] = 0

with reduced form:

(I −G1)y1 = β0(I −G1)G1y1 + (γ0I + δ0G
1)(I −G1)X1 + (I −G1)ξ, E[ξ|X1] = 0

Then following steps of Bramoullé et al. (2009):

(I−G1)y1 = (I−β0G1)−1(γ0I+δ0G
1)(I−G1)X1+(I−β0G1)−1(I−G1)ξ, E[ξ|X] = 0

And:
E[(I −G1)G1y1|X1] = (I − β0G1)−1(γ0I + δ0G

1)(I −G1)G1X1

As was proven in Bramoullé et al. (2009), if γ0β0 + δ0 6= 0 and I,G1, (G1)2 and (G1)3

are linearly independent, the social effects are identified. So this expression can be
plugged-in into the reduced form of the equation for the probability of retake.

E[(I−G1)PR|X1] = β((I−β0G1)−1(γ0I+δ0G
1)(I−G1)G1)X1+(γI+δG1)(I−G1)X1

Now consider two sets of structural parameters (β, γ, δ) and (β̃, γ̃, δ̃) leading to the

44



same reduced form. It means that:

β(I − β0G1)−1(γ0I + δ0G
1)(I −G1)G1 + (γI + δG1)(I −G1) =

= β̃(I − β0G1)−1(γ0I + δ0G
1)(I −G1)G1 + (γ̃I + δ̃G1)(I −G1)

β(γ0I + δ0G
1)(I −G1)G1 + (I − β0G1)(γI + δG1)(I −G1) =

= β̃(γ0I + δ0G
1)(I −G1)G1 + (I − β0G1)(γ̃I + δ̃G1)(I −G1)

βγ0G
1 + (βδ0 − βγ0)(G1)2 − βδ0(G1)3 + (γI − (β0γ − δ + γ)G1)−

−(β0δ − γβ0 + δ)(G1)2 + β0δ(G
1)3) =

= β̃γ0G
1 + (β̃δ0 − β̃γ0)(G1)2 − β̃δ0(G1)3 + (γ̃I − (β0γ̃ − δ̃ + γ̃)G1)−

−(β0δ̃ − γ̃β0 + δ̃)(G1)2 + β0δ̃(G
1)3)

I stopped here

γI + (βγ0 − β0γ + δ − γ)G1 + (βδ0 − βγ0 − β0δ + β0γ − δ)(G1)
2

+ (β0δ − βδ0)(G1)
3

=

= γ̃I + (β̃γ0 − β0γ̃ + δ̃ − γ̃)G1 + (β̃δ0 − β̃γ0 − β0δ̃ + β0γ̃ − δ̃)(G1)
2

+ (β0δ̃ − β̃δ0)(G1)
3

(γ1 − γ̃1)I + ((β − β̃)γ0 − (γ − γ̃)β0 + (δ − δ̃)− (γ − γ̃))G1 + ((β − β̃)δ0 − (β − β̃)γ0−

−(δ − δ̃)β0 + (γ − γ̃)β0 − (δ − δ̃))(G1)
2

+ ((δ − δ̃)β0 − (β − β̃)δ0)(G
1)

3
= 0

Now let I,G1, (G1)2 and (G1)3 be linearly independent. Then the above equality holds
only if all three coefficients are 0:

γ − γ̃ = 0

(β − β̃)γ0 − (γ − γ̃)β0 + (δ − δ̃)− (γ − γ̃) = 0

(β − β̃)δ0 − (β − β̃)γ0 − (δ − δ̃)β0 + (γ − γ̃)β0 − (δ − δ̃) = 0

(δ − δ̃)β0 − (β − β̃)δ0 = 0

If β0 6= 0 and γ20 + δ20 6= 0, two sets of coefficients (β, γ, δ) and (β̃, γ̃, δ̃) are equivalent.
Note that the restrictions on the coefficients of the peer effect model suggest that the
model has an endogenous peer effect and the performance depends on own set of observed
characteristics, or on peers observed characteristics, or on both. These requirements are
natural for the peer effect model and therefore, the identification result is achieved. �
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Proof of Lemma 4. (Identification, Step 2, correlated effects)

The proof for Lemma 4 follows directly by applying similar arguments to the proofs
of Lemma 2 and Lemma 3. Then, the identification is achieved under the conditions of
linear independence of I,G1, (G1)2, (G1)3 and I,G2, (G2)2, (G2)3 and G1 6= G2 and
the following assumptions on the coefficients: β0,1 6= 0, γ20,1 + δ20,1 6= 0, β0,2 6= 0 and

γ20,2 + δ20,2 6= 0. �

Proof of Lemma 5. Consistency of θ̂Lee of Step 1

√
n(θ̂Lee−θ) = (

1

n
Ẑ
T
X̃1)−1

1√
n
Ẑ
T
PR−

√
nθ = (

1

n
Ẑ
T
X̃1)−1(

1√
n
Ẑ
T
PR− 1√

n
Ẑ
T
X̃1θ)

Then we can rewrite the last term:

1√
n
Ẑ
T
PR− 1√

n
Ẑ
T
X̃1θ =

1√
n
Ẑ
T

(PR−X̃1θ) =
1√
n
Ẑ
T

(αi+βG1y1+(γI+δG1)X1+ν−

−(αi+ (γI + δG1)X1 + βG1y1)) =
1√
n
Ẑ
T
ν

Hence,
√
n(θ̂Lee − θ) = (

1

n
Ẑ
T
X̃1)−1

1√
n
Ẑ
T
ν

Then the following two statements can be shown under the assumed regularity conditions
and by direct application of Lemmas A.7, A.8 and A.9 in Lee (2003):

plim
1

n
Ẑ
T
X̃1 = plim

1

n
ZTZ = J

1√
n
Ẑ
T
ν

D−→ N (0, σ2νJ)

which will yield the desired result. �

Proof of Lemma 6. Consistency of φ̂Lee of Step 2

√
n(φ̂Lee−φ) = (

1

n
ˆ̄Z
T
X̄)−1

1√
n

ˆ̄Z
T

(y2 − y1)−
√
nφ = (

1

n
ˆ̄Z
T
X̄)−1(

1√
n

ˆ̄Z
T

(y2 − y1)− 1√
n

ˆ̄Z
T
X̄φ)

Then we can rewrite the last term:

1√
n

ˆ̄Z
T

(y2 − y1)− 1√
n

ˆ̄Z
T
X̄φ =

1√
n

ˆ̄Z
T

(y2 − y1−X̄φ) =
1√
n

ˆ̄Z
T

((α2−α1)i+β2G
2y2−β1G1y1+
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+δ̃UR+γ2X
2
TV −γ1X

1
TV +δ2G

2X2−δ1G1X1+∆ε−((α2−α1)i+β2G
2y2−β1G1y1+δ̃UR+

+γ2X
2
TV − γ1X

1
TV + δ2G

2X2 − δ1G1X1) =
1√
n

ˆ̄Z
T

∆ε

Hence,
√
n(φ̂Lee − φ) = (

1

n
ˆ̄Z
T
X̄)−1

1√
n

ˆ̄Z
T

∆ε

The following two statements have to hold to get the desired result:

plim
1

n
ˆ̄Z
T
X̄ = plim

1

n
Z̄
T
Z̄ = J̄

1√
n

ˆ̄Z
T

∆ε
D−→ N (0, (σ2ε1 + σ2ε2)J̄)

First, let’s consider 1
n

ˆ̄Z
T
X̄. It is equivalent to 1

n [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

E[G1y1(θ̂12SLS)|X1], E[G2y2(φ̂2SLS)|X2,X1]]T [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,G1y1,
G2y2]
First six rows do not consist any element of estimated vector of coefficients, and there-
fore, will not matter for the consistency argument.

Notice also that G1y1 = G1(I − β1G1)−1α1 +G1(I − β1G1)−1(γ1I + δ1G1)X1 +
G1(I−β1G1)−1ε1 andG2y2 = G2(I−β2G2)−1[(α2−α1)i+(I−β1G1)((I−β1G1)−1α1+
(I − β1G1)−1(γ1I + δ1G1)X1) + δ̃UR + γ2X

2
TV − γ1X1

TV + δ2G
2X2 − δ1G1X1] +

G2(I − β2G2)−1∆ε can be both split into two part: with and without error term.
Define E[G1y1] ≡ G1y1 − G1(I − β1G1)−1ε1 and E[G2y2] ≡ G2y2 − G2(I −

β2G
2)−1∆ε

Consider now row six: 1
n(E[G1y1(θ̂12SLS)|X1])T [i,X2

TV ,X
1
TV ,G

2X2,G1X1,UR,

E[G1y1], E[G2y2]] + 1
n(E[G1y1(θ̂12SLS)|X1])T [0, 0, 0, 0, 0, 0, G1(I−β1G1)−1ε1, G

2(I−
β2G

2)−1∆ε].
By the assumed uniform boundedness of X1, X2 in absolute values as well as by the

uniform boundness of the row and column sums of the matrices G1, G2, (I − β1G1)−1

and (I − β2G2)−1, by E[∆ε] = 0 and by Lemmas A.6, A.7 and A.8 in Lee (2003), it can
be shown that this row will have a limit in probability, which equals to corresponding
row of J̄ .

Similar argument holds for the row seven: 1
n(E[G2y2(φ̂2SLS)|X1,X2])T [i,X2

TV ,X
1
TV ,

G2X2,G1X1,UR, E[G1y1], E[G2y2]] + 1
n(E[G2y2(φ̂2SLS)|X1,X2])T [0, 0, 0, 0, 0, 0,G1(I−

β1G1)−1ε1, G
2(I − β2G2)−1∆ε]. Therefore, the first statement is correct.

For the second statement consider 1√
n

ˆ̄Z
T

∆ε = [i,X2
TV ,X

1
TV ,G

2X2,G1X1,UR,

E[G1y1(θ̂12SLS)|X1], E[G2y2(φ̂2SLS)|X2,X1]]T∆ε.

None of the elements in ˆ̄Z consist ∆ε, therefore, since E[∆ε] = 0, the expectation of
the whole term gives 0, which concludes the consistency part of the proof.

Moreover, the variance can be written as (σε1 + σε2)E[ 1n
ˆ̄Z
T ˆ̄Z]. By the same Lemmas
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as before, it can be shown that plimE[ 1n
ˆ̄Z
T ˆ̄Z] = plim 1

nZ̄
T
Z̄ = J̄ , which concludes the

proof of normality.�.

Discussion of 2.4.2, step 2.

I am approaching the estimation of the second step also adopting the 2SLS procedure
discussed for the first step. First, the model (5) can be rewritten in the following way:

∆y = (α2 − α1)i+ β2G
2y2 − β1G1y1 + δ̃UR+ γ2X

2
TV − γ1X

1
TV + δ2G

2X2−

−δ1G1X1 + ∆ε

Then:

(I−G1)∆y = β2(I−G1)G2y2−β1(I−G1)G1y1 + δ̃(I−G1)UR+γ2(I−G1)X2
TV −

− γ1(I −G1)X1
TV + δ2(I −G1)G2X2 − δ1(I −G1)G1X1 + (I −G1)∆ε (10)

Recall: X̄ = [(I − G1)X2
TV , (I − G1)X1

TV , (I − G1)G2X2, (I − G1)G1X1, (I −
G1)UR, (I −G1)G1y1, (I −G1)G2y2].

And M = [(I − G1)X2
TV , (I − G1)X1

TV , (I − G1)G2X2, (I − G1)G1X1, (I −
G1)UR,E[(I −G1)G1y1(θ̂12SLS)|X1], (I −G1)(G2)2X2].

I modify (9), taking expectations given X2 and recalling E[∆ε] = 0:

(I − β2G2)E[(I −G1)y2|X2] = (I − β1G1)(I −G1)y1 + δ̃(I −G1)UR+ γ2(I −G1)X2
TV −

−γ1(I −G1)X1
TV + δ2(I −G1)G2X2 − δ1(I −G1)G1X1

E[(I −G1)y2|X2] = (I − β2G2)−1[(I − β1G1)(I −G1)y1 + δ̃(I −G1)UR+ γ2(I −G1)X2
TV −

−γ1(I −G1)X1
TV + δ2(I −G1)G2X2 − δ1(I −G1)G1X1]

Let E[(I−G1)G2y2(φ)|X2,X1] = G2(I−β2G2)−1[(I−β1G1)E[(I−G1)y1(θ1)|X1]+
δ̃(I−G1)UR+γ2(I−G1)X2

TV −γ1(I−G1)X1
TV +δ2(I−G1)G2X2−δ1(I−G1)G1X1],

where E[(I −G1)y1(θ1)|X1] = (I − β1G1)−1(I −G1)(γ1I + δ1G
1)X1.

Then I also define the following vector Z̄ = [(I − G1)X2
TV , (I − G1)X1

TV , (I −
G1)G2X2, (I −G1)G1X1, (I −G1)UR,
E[(I −G1)G1y1(θ1)|X1],E[(I −G1)G2y2(φ)|X2,X1]

I propose the following estimation procedure:

First, compute the 2SLS estimator for φ = (α1, α2, β1, β2, γ1, γ2, δ1, δ2) of the (7), using
vector of instruments M and vector of covariates X̄1, as defined above.

φ̂12SLS = (X̄
T
PMX̄)−1X̄

T
PM (y2 − y1), where PM = M(MTM)−1MT is a

projection matrix.

Second, define ˆ̄Z = Z̄(φ̂2SLS) = [(I −G1)X2
TV , (I −G1)X1

TV , (I −G1)G2X2, (I −
G1)G1X1, (I−G1)UR,E[(I−G1)G1y1(θ̂12SLS)|X1]], E[(I−G1)G2y2(φ̂2SLS)|X2,X1],
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where E[(I − G1)G1y1(θ̂12SLS)|X1] = (I − β̂1,2SLSG
1)−1(I − G1)(γ̂1,2SLSI +

δ̂1,2SLSG
1)X1, with θ̂12SLS obtained as the estimation of the first stage on the

first step.
and E[(I−G1)G2y2(φ̂2SLS)|X2,X1] = G2(I−β̂2,2SLSG2)−1[(I−β̂1,2SLSG1)E[(I−
G1)y1(θ̂12SLS)|X1] +

ˆ̃
δ2SLS(I − G1)UR + γ̂2,2SLS(I − G1)X2

TV − γ̂1,2SLS(I −
G1)X1

TV + δ̂2,2SLS(I −G1)G2X2 − δ̂1,2SLS(I −G1)G1X1]

Finally, we use ˆ̄Z as a new vector of instrument to estimate (7). Then the following

consistent estimator is obtained: φ̂Lee = ( ˆ̄Z
T
X̄)−1 ˆ̄Z

T
(y2 − y1).

B. Additional Tables and figures

Table B.1: Distribution of the number of friends in samples

# of friends Long study, year 1 Long study, year2 Short study

0 17 5.29% 26 8.12 % 9 4.39 %

1 1 0.31% 14 4.37% 3 1.46 %

2 5 1.56% 34 10.62% 4 1.95 %

3 28 8.72% 39 12.19% 17 8.29 %

4 32 9.97% 56 17.5% 28 13.66 %

5 39 12.15% 55 17.19% 34 16.59 %

6 41 12.77% 39 12.19% 34 16.59 %

7 150 46.73% 33 10.31% 28 13.66 %

8 2 0.62% 0 0.00% 21 10.24 %

9 1 0.31% 0 0.00% 14 6.83 %

10 3 0.93% 0 0.00% 4 1.95 %

11 0 0.00% 0 0.00% 3 1.46 %

12 0 0.00% 0 0.00% 1 0.49 %

13 1 0.31% 0 0.00% 3 1.46 %

14 0 0.00% 0 0.00% 2 0.98 %

Table B.2: Unified State Exams statistics

Subject Number of participated Average grade

Mathematics 305 59.87
Russian 305 79.85
Biology 2 71.5
Chemistry 1 80
Computer Science 49 76.96
Economics 27 32.52
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Foreign Language 272 70.64
Geography 4 67
History 78 70.94
Law 20 69.4
Literature 20 69.35
Orientalism 2 75
Physics 49 58.45
Social Studies 269 71.01

Table B.3: Descriptive statistics

Variable Mean St.Dev. Min Max

Average grade, wave 1 7.20 0.94 4.58 9.35
Average grade, wave 2 7.23 1.13 4.50 9.86
Retakes (dummy) 0.33 0.47 0 1
Retakes (number) 0.684 1.25 0 6
Ability 183.6 70.09 106 355
Gender (f) 0.67 0.47 0 1
Tuition, wave 1 (private) 0.18 0.38 0 1
Tuition, wave 2 (private) 0.184 0.39 0 1
Economics department 0.328 0.47 0 1
Management department 0.272 0.45 0 1
Computer Science department 0.26 0.44 0 1
Working status, wave1 (not working) 0.804 0.39 0 1
Working status, wave2 (not working) 0.74 0.44 0 1
Higher Education of mother 0.796 0.4 0 1
Higher Education of father 0.624 0.49 0 1
Single parent family 0.2 0.40 0 1
Family with more than 1 kid 0.54 0.50 0 1
Living conditions, wave 1 (dormitory) 0.16 0.37 0 1
Living conditions, wave 2 (dormitory) 0.172 0.38 0 1
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Figure B.1: Distribution of friends in Short and Long surveys

Table B.4: Results for the models with reciprocal links and best friends, no correlated
effects

Variable Recipr., (1) Recipr., (2) Best, (3) Best, (4)

Constant -0.2318• -0.3127**
Unexpected Retake 0.1320 -0.0097 0.0469 0.0768
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Endogenous effect, period 1 0.0180 0.0111 0.0231 -0.0467**
Endogenous effect, period 2 0.0480* 0.0407* 0.0818*** 0.0215

Time-variant own controls
Tuition, w1 0.0317 -0.0771
Tuition, w2 -0.1547 -0.2518
Working status, w1 -0.0909 -0.1235
Working status, w2 0.1483* 0.1510*

Network’s controls
Economics, w1 0.0778 -0.0214 0.0082 0.1953
Economics, w2 -0.4701** -0.5337** -0.4869** -0.4096**
Computer Science, w1 -0.4977**
Computer Science, w2 -0.3899•

Working status, w1 -0.2272 -0.1881
Working status, w2 -0.1623 -0.4340**
Siblings, w1 0.2611*
Siblings, w2 -0.0080

Sample size 250 250 250 250
BIC -224.67 -221.77 -221.41 -218.07

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

Table B.5: Results for the models with best friends and reciprocal links, with correlated
effects

Variable Recipr.,(1) Recipr.,(2) Best,(3) Best,(4)

Unexpected Retake -0.1212 -0.0913 0.0406 -0.1365
Endogenous effect, period 1 -0.0081 -0.1188 0.0235 -0.0404
Endogenous effect, period 2 0.0498 0.0016 0.0811 -0.0262

Time-variant own controls
Tuition, w1 0.0394 0.1946
Tuition, w2 -0.1933 -0.0608
Working status, w1 0.0296 -0.0248
Working status, w2 0.0493 0.1437

Network’s controls
Abilities, w1 -0.0004
Abilities, w2 -0.0029
Tuition, w1 -0.5923 0.2977
Tuition, w2 -0.4462* 0.1171
Economics, w1 1.0059
Economics, w2 -0.2755
HE of mother, w1 -0.3578
HE of mother, w2 -0.2662
Single Parent, w1 -0.0083
Single Parent, w2 -0.1985
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Siblings, w1 0.2174
Siblings, w2 0.1179

Sample size 250 250 250 250
BIC -191.02 -192.71 -189.98 -183.06

*** - p-value < 0.01, ** - p-value < 0.05, * - p-value < 0.1, • - p-value < 0.15

Table B.6: List of classes with retakes in the sample

Class Department Total No. of retakes Important classes

Algebra Computer Science 21 No
Architecture of Computer
Systems

Computer Science 2 No

Architecture of ECM Computer Science 1 No
Basics of computer technology
and programming

Computer Science 3 Yes

Discrete Mathematic Computer Science 8 No
Discrete Mathematic Economics 2 No
Economic Theory and Institu-
tional Analysis

Management 28 (in 2 terms) Yes

Economic Theory and Institu-
tional Analysis

Computer Science 12 No

Economic Theory Basics Economics 27 (in 3 terms) Yes
Economics Computer Science 3 No
English and other languages All departments 9 No
Geometry and Algebra Computer Science 8 Yes
History of economic thoughts Economics 1 Yes
History of foreign state and
law

Law 2 Yes

Introduction to software engi-
neering

Computer Science 3 Yes

Judicial power and law en-
forcement

Law 1 No

Life safety All departments 3 No
Linear Algebra Economics 28 No
Mathematical Analysis Computer Science 68 (in 2 terms) Yes
Mathematical Analysis Economics 12 Yes
Mathematics Management 31 (in 2 terms) Yes
Methods of financial and eco-
nomic computations

Economics 1 No

Microeconomics Computer Science 18 (in 2 terms) Yes
Philosophy Management 6 Yes
Roman Law Law 1 No
Socio-Economic Statistics Economics 2 No
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Sociology Management 1 Yes
Theoretical basics of com-
puter technology

Computer Science 9 (in 2 terms) No

Theory of state and law Law 4 Yes
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