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Motivation

Consumers care what products their friends and relatives use.

Examples: innovation/technology adoption, social platform use,
mobile phone contracts.

Switching costs are often high: product adoption is irreversible
(at least temporarily).

Firms’ initial seeds in the social network really matter for profit
and market share.
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Previous work

This work is mostly closely related to: Goyal and Kearns (2012);
Bimpikis, Ozdaglar, and Yildiz (2014) (...and Hotelling, 1929)

Quality and seeding: Fazeli and Jadbabaie (2012a,b,c); Fazeli,
Ajorlou, and Jadbabaie (2014).

Other papers where consumers can switch products many times:
Bharathi, Kempe, and Salek (2007); Alon, Feldman, Procaccia,
and Tennenholtz (2010); Apt and Markakis (2011); Simon and
Apt (2012); Tzoumas, Amanatidis, and Markakis (2012);
Borodin, Braverman, Lucier, and Oren (2013); Apt and Markakis
(2014); Mei and Bullo (2014).
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Outline of this talk

We develop a tractable model of cascades in networks.

We introduce a measure of node influence called cascade
centrality.

We study a competitive di↵usion game on the network.

We also characterize the expected number of adopters using
cascade centrality in general graphs and find analytical
expressions for many graphs.

In a follow-up paper, we tackle network design questions:
maximizing adoption and minimizing failures.

Lim/Ozdaglar/Teytelboym (MIT/Oxford) Cascades 5 / 30



Outline of this talk

We develop a tractable model of cascades in networks.

We introduce a measure of node influence called cascade
centrality.

We study a competitive di↵usion game on the network.

We also characterize the expected number of adopters using
cascade centrality in general graphs and find analytical
expressions for many graphs.

In a follow-up paper, we tackle network design questions:
maximizing adoption and minimizing failures.

Lim/Ozdaglar/Teytelboym (MIT/Oxford) Cascades 5 / 30



Outline of this talk

We develop a tractable model of cascades in networks.

We introduce a measure of node influence called cascade
centrality.

We study a competitive di↵usion game on the network.

We also characterize the expected number of adopters using
cascade centrality in general graphs and find analytical
expressions for many graphs.

In a follow-up paper, we tackle network design questions:
maximizing adoption and minimizing failures.

Lim/Ozdaglar/Teytelboym (MIT/Oxford) Cascades 5 / 30



Outline of this talk

We develop a tractable model of cascades in networks.

We introduce a measure of node influence called cascade
centrality.

We study a competitive di↵usion game on the network.

We also characterize the expected number of adopters using
cascade centrality in general graphs and find analytical
expressions for many graphs.

In a follow-up paper, we tackle network design questions:
maximizing adoption and minimizing failures.

Lim/Ozdaglar/Teytelboym (MIT/Oxford) Cascades 5 / 30



Outline of this talk

We develop a tractable model of cascades in networks.

We introduce a measure of node influence called cascade
centrality.

We study a competitive di↵usion game on the network.

We also characterize the expected number of adopters using
cascade centrality in general graphs and find analytical
expressions for many graphs.

In a follow-up paper, we tackle network design questions:
maximizing adoption and minimizing failures.

Lim/Ozdaglar/Teytelboym (MIT/Oxford) Cascades 5 / 30



Outline of this talk

We develop a tractable model of cascades in networks.

We introduce a measure of node influence called cascade
centrality.

We study a competitive di↵usion game on the network.

We also characterize the expected number of adopters using
cascade centrality in general graphs and find analytical
expressions for many graphs.

In a follow-up paper, we tackle network design questions:
maximizing adoption and minimizing failures.

Lim/Ozdaglar/Teytelboym (MIT/Oxford) Cascades 5 / 30



Model
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Preliminaries

Simple, undirected graph G (V ,E ).

A adoption threshold for agent i is a random variable ⇥
i

drawn
from a probability distribution with support [0, 1].

The associated multivariate probability distribution for all the
agents in the graph is f (✓).

Each agent is i 2 V assigned a threshold ✓
i

. Let’s define the
threshold profile of agents as ✓ := (✓

i

)
i2V . A network G✓ is a

graph endowed with a threshold profile.
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Seeding

Two firms: A selling product a and B selling product b.
Products are perfectly substitutable.

The state of agent i at time t is denoted x

i

(t) 2 {0, a, b}.
Denote by S

A

t

(G✓) and S

B

t

(G✓) the sets of new adopters of
products A and B in network G✓ at time t resp.

At time t = 0, x
i

(0) = 0 for all i , and each firm simultaneously
chooses one agent SA

0 ,S
B

0 2 V as a seed for their product.
Overlap in seed sets resolved randomly.
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Linear threshold process dynamics
Any agent who has not adopted any product by some period t,
decides to adopt one of the products in time period t + 1 i↵

total friends who adopted a+ total friends who adopted b

total friends
� ✓

i

i.e. Granovetter’s linear threshold model.

If the threshold is reached, the probability of adopting
product a is

# friends who adopted aat t

# friends who adopted aat t+ # friends who adopted bat t

Once an agent adopted product a, he remains in state a in all
subsequent periods.

This process converges to a random set: eventual adopters SA of
product a and S

B of product b.
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Expected number of adopters

Fixing seeds SA

0 and S

B

0 and a graph G , and re-run the process
by drawing the agents’ thresholds from f (✓) each time.

Denoting the probability of any agent adopting product a is

PA

i

(G , SA

0 , S
B

0 ) =

Z

Rn

|SA(G✓, S
A

0 , S
B

0 ) \ {i}|f (✓)d✓

Expected number of adopters of product a is

E[SA(G , SA

0 , S
B

0 )] =

Z

Rn

|SA(G✓, S
A

0 , S
B

0 )|f (✓)d✓

=
nX

i=1

PA

i

(G , SA

0 , S
B

0 )
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Consider what happens

when firm A is a monopolist
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Uniform distribution

Assumption
For any G✓ and every i 2 V , ⇥

i

⇠ U(0, 1) and independent.

It’s the Laplacian prior for the firms. Moreover, we prove that

PA

i

(G ) =
X

j2N
i

(G)

PA

j

(G |i /2 S

A)

d

i

if and only if ⇥
i

⇠ U(0, 1).
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Paths

Definition
A sequence of nodes P = (i0, · · · , ik) on a graph G is a path if
i

j

2 N

i

j�1(G ) for all 1  j  k and each i

j

2 P is distinct.
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Degree sequence product

Definition
For a path P , a degree sequence along any path P is (d

i

(G ))
i2P\{i0}.

Definition
A degree sequence product along P is:

�
P

:=
Y

i2P\{i0}

d

i

(G )
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Key proposition

For any G and S0, let Pji

be the set of all paths beginning at j 2 S0

and ending at i 2 V \ S0 and P⇤
ji

✓ P
ji

denote the subset of those
paths that exclude any other node in S0.

Proposition
Suppose firm A is a monopolist. Given a graph G and seed S0, the

probability that node i 2 V \ S0 adopts product a is:

PA

i

(G , SA

0 ) =
X

j2S0

X

P2P⇤
ji

1

�
P

See Kempe et al. (2003); Chen et al. (2010).
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Cascade centrality

Definition
Cascade centrality of node i in graph G is the expected number of
adopters of product a in that graph given i is the seed and firm A is a
monopolist, namely

C
i

(G ) := E[SA(G , {i})] = 1+
X

j2V \{i}

PA

j

(G , {i}) = 1+
X

j2V \{i}

X

P2P
ij

1

�
P
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Back to the duopoly...
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Game: uniform thresholds

Action space of firms A and B : ⌃ := ⌃
A

⇥ ⌃
B

:= V ⇥ V

Action profile � := (�
A

, �
B

) is simply a pair of nodes.

Payo↵ profile: ⇡ := (⇡
A

(�), ⇡
B

(�)) is the expected number of
adopter of products a and b.
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Game: uniform thresholds

For i 6= j , let us denote ⌅(i , j) as the set of all paths that begin
at i and include (but do not necessarily end) at j .

Proposition
The expected number of adopters of product a (i.e. firm A’s payo↵)

is

⇡
A

(�
A

, �
B

) =

(
C�

A

2 if �
A

= �
B

C�
A

� ✏(�
A

, �
B

) if �
A

6= �
B

where

✏(i , j) =
X

P2⌅(i ,j)

1

�
P
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PSNE

The game is defined as � := (⌃, ⇡).

Definition
A profile of actions �⇤ := (�⇤

A

, �⇤
B

) 2 ⌃ is a pure-strategy Nash
equilibrium if:

⇡
A

(�⇤
A

, �⇤
B

) � ⇡
A

(�
A

, �⇤
B

) for all actions �
A

2 ⌃
A

⇡
B

(�⇤
A

, �⇤
B

) � ⇡
B

(�⇤
A

, �
B

) for all actions �
B

2 ⌃
B

Define ⌃⇤ as the set of all pure-strategy Nash equilibria.

Lim/Ozdaglar/Teytelboym (MIT/Oxford) Cascades 20 / 30



PSNE

The game is defined as � := (⌃, ⇡).

Definition
A profile of actions �⇤ := (�⇤

A

, �⇤
B

) 2 ⌃ is a pure-strategy Nash
equilibrium if:

⇡
A

(�⇤
A

, �⇤
B

) � ⇡
A

(�
A

, �⇤
B

) for all actions �
A

2 ⌃
A

⇡
B

(�⇤
A

, �⇤
B

) � ⇡
B

(�⇤
A

, �
B

) for all actions �
B

2 ⌃
B

Define ⌃⇤ as the set of all pure-strategy Nash equilibria.

Lim/Ozdaglar/Teytelboym (MIT/Oxford) Cascades 20 / 30















PSNE: existence characterization

Theorem
Consider a duopoly with unit budgets �. Then � admits at least one

PSNE if and only if either:

1. There exists i 2 V such that, for any j 2 V \ {i}:
C
i

C
j

� 2� 2 ·
✓
✏(j , i)

C
j

◆

then there exists a �⇤ = (i , i) PSNE, or...
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PSNE: existence characterization

Theorem
Consider a duopoly with unit budgets �. Then � admits at least one

PSNE if and only if either Condition 1 is satisfied or

2. There exist i , j 2 V such that, C
i

� C
j

and for any k 2 V \ {i , j}:
C
i

C
k

� 1 +
✏(i , j)� ✏(k , j)

C
k

C
j

C
k

� 1 +
✏(j , i)� ✏(k , i)

C
k

1

2
+

✏(i , j)

C
j

 C
i

C
j

 2� 2 ·
✓
✏(j , i)

C
j

◆

in which case there exists a �⇤ = (i , j) (and �⇤ = (j , i) by symmetry)

PSNE.
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Budget multiplier

Definition
For arbitrary integer budgets B

A

and B
B

, the budget multiplier is
defined as:

BM (�) := max
�2⌃⇤

⇡
A

(�)/⇡
B

(�)

B
A

/B
B

Theorem
For any � that admits at least one PSNE,

1  BM < 2
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Price of anarchy

Social planner’s objective: Y (�) := ⇡
A

(�) + ⇡
B

(�) (i.e. firms’ total
payo↵s).

Definition
Price of Anarchy is defined as:

PoA(�) =
max�2⌃ Y (�)

min�2⌃⇤
Y (�)

Theorem
For any � that admits at least one PSNE,

1  PoA(�) < 1.5
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Trees

Proposition
Suppose G is a tree. Then � admits at least one PSNE.
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Trees

We provide necessary and su�cient conditions only on the
largest and second largest degree of the trees such that:

I
all PSNEs are e�cient

I
no PSNEs are e�cient

I
at least one PSNE is e�cient

I
at least one PSNE is ine�cient

I
there is at least one e�cient and one ine�cient PSNE
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Conclusions

Using a new notion of cascade centrality, we analyzed a
tractable cascade process on general networks.

We applied these insights to studying competitive di↵usion.

The competition model can be extended in a bunch of ways
(di↵erent quality of products, sequential entry, multiple seeds).
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