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Abstract
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search. At the second best policy, the government uses basic research
to induce the most productive institutions to carry out more applied re-
search than they would choose if they had a fixed budget: the government
information disadvantage causes too much concentration of research rel-
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1 Introduction

In 2008 in the OECD countries, government expenditure on scientific research
amounted to around 0.8% of GDP, ranging from 0.2% in Mexico to 1.1% in
Spain (OECD 2009). These large sums of taxpayers’ money are channelled in
many different ways: dedicated research centres, funding for public or private
universities, subsidies to firms and private non-profit organisations among oth-
ers. Also varied is the link between the funds provided and their destination:
some funding is linked to specific research projects, some is distributed in con-
sideration of past achievement, and some is simply awarded to institutions to
spend as they see fit.

This variety raises immediate efficiency questions. Is the multiplicity of
manners in which these funds are assigned a good thing? How should the
total funding be distributed across different institutions? Would it be possible
to re-allocate funding from one spending method to another and improve its
impact on society? Should the funding agency be concerned with the nature,
basic or applied, of the research carried out by the institutions which it funds?
This paper provides a theoretical framework to address these questions: the
aim here is to lay the foundations for a theory of the optimal public research
spending.

My approach is microeconomic: I leave the macroeconomic aspect of total
spending in the background, and concentrate instead on balance between basic
and applied research and on the distribution of funding among different research
institutions. The answers to these two questions, which are separate in the first
best, turn out to be interlinked due to the information disadvantage suffered
by the government. I make the plausible assumptions that research institutions
differ in their characteristics and that the government’s and the institutions’
preferences regarding the balance between basic and applied research are not
perfectly aligned. The government wishes to allocate its scarce resources to the
institutions where they are most productive, and at the same time to ensure the
“right” balance between basic and applied research. Institutions care about the
“prestige” value of their research. Misalignment in preferences and differences
among institutions create a non-trivial optimisation problem. As my analy-

sis shows, the balance between basic and applied research and the allocation



across institutions interact: the government uses basic research funding — more
precisely, funding that the recipient institutions will choose to devote to basic
research —, as a reward to induce more productive institutions to do more ap-
plied research. This is a suboptimal, second best policy: there is a distortion
relative to the efficient allocation where the social marginal benefit of funding
is constant across institutions: in words, research, both basic and applied, is
inefficiently concentrated in the most efficient institutions.

The relative role of applied and basic research, at the centre of my study,
requires their specific characteristics to be carefully identified and modelled
accurately. The distinguishing feature I posit in this paper is that it is harder
to observe the benefits of basic research than it is to observe the benefits of
applied research. This idea matches closely the differences between basic and
applied research highlighted in the existing literature. Typically, basic research
(or, Strandburg (2005), fundamental, pure, curiosity-driven, upstream, unpre-
dictable) is seen as driven by scientists’ curiosity, its aim to acquire knowledge
for knowledge’s sake; in contrast, applied research is designed to solve practical
problems. When it is measured, for example by the US National Science Foun-
dation, research expenditure is classified precisely according to this criterion:
“basic research is defined as systematic study directed toward fuller knowledge
or understanding of the fundamental aspects of phenomena and of observable
facts without specific applications towards processes or products in mind.”
Conversely, “applied research is defined as systematic study to gain knowledge
or understanding necessary to determine the means by which a recognized and
specific need may be met” (NSB 2008, p 7). Thus, simplifying only slightly,
I posit that while all research is uncertain, an applied research project is one
for which it is possible to specify the benefits in advance, and so to say ex-post
whether or not it succeeded and realised these benefits. On the contrary, for
basic research it is unknown in advance where a positive effect will emerge, if it
does: therefore what the benefits of a basic research project might possibly be
cannot by definition even be described ex-ante, and so the question of whether

they have materialised is simply meaningless.! Formally, the model I propose

I'Nelson (1959 pp 301-2) gives several examples of basic research projects pursued as an
end in themselves, which unexpectedly assists the solution of an apparently completely un-

related applied research problem. Among the more recent ones, Moody (1995) describes in



is one where applied research is contractible, basic research is not.

Like some of the existing models (for example, Evenson and Kislev 1976, or
more recently Aghion et al. 2008), I posit a hierarchical link between basic and
applied research: the former precedes and provides the foundation to the latter.
Specifically, I assume that applied research has a direct impact on the nation’s
income, whereas basic research has a direct impact only on the cost of carrying
out applied research: applied research becomes easier, cheaper, more likely to
succeed, and so on, when the body of basic research available to society is
larger. I capture the unpredictability of the nature of the benefits arising from
basic research with the assumption of a completely diffuse link between pure
and applied research: in expectation, each applied research project is helped
equally by every basic research project, implying that what matter for applied
research is only total amount of basic research undertaken in society.

Having first shown, in Proposition 3, how information constraints force the
government to use basic research as a reward to the more productive institu-
tions to induce them to perform more applied research, and the consequent
inefficiencies arising from difference in marginal net social return in different
institutions, and between basic and applied research, the paper next explains
how the optimal funding can be implemented in practice. I show that the
dual funding system suggests itself naturally: in the optimal policy I derive,
all institutions receive an identical “block grant”, subject to a threshold level
of applied research. More efficient institutions, which can do this minimum
amount of applied research spending less than the “block grant” can therefore

use their savings to engage in basic research. Additional funding is made avail-

detail the numerous strands of basic research which allowed the creation of the ubiquitous
CD. A GPS navigation system would be far too inaccurate to be of any practical use without
corrections of gravitational effects central to the theory of relativity (Haustein 2009). The
abstract mathematical problem of covering a surface with symmetric tiles lies at the foun-
dation of our understanding and exploitation of superconductors (Edelson 1992). Gauss’s
investigation into the distribution of prime numbers has led, with the contributions of some
of the best mathematical minds over the course of two centuries, to the possibility of un-
breakable cryptographic codes, without which e-commerce would not be possible (du Satoy
2003). Table 3 in Gersbach et al (2009) has a longer and more systematic list. An empirical
investigation of the link between basic research conducted in universities and commercial
applications of the applied research it generated is in Jensen and Thursby (2001).



able to institutions through a second funding channel. To receive these funds,
an institution must carry out additional applied research: this corresponds to
research grant funded applied research. Interestingly, the additional funding is
lower than the cost of the additional applied research to be carried out: insti-
tutions need to “co-fund” any further applied research they wish to carry out.
This is in contrast to the “cost-plus” approach favoured by funding agencies in
the UK and elsewhere, which typically award research grants covering not only
the full marginal cost but also a share of the institution’s fixed costs.

The paper is organised as follows. Section 2 presents the model, and Sec-
tion 3 the results. Section 4 shows how the policy can be implemented in
practice; some additional remarks are in Section 5, and Section 6 concludes.
Mathematical proofs are in the Appendix.

2 The model

2.1 Research institutions.

I model the publicly funded research sector of an economy. There is a con-
tinuum of institutions — private or public — with the potential to do research;
their number is normalised to 1 without loss of generality. Institutions differ
in their ability to spend public research funding productively. This ability is
measured by an exogenously given parameter 6 € [Q, ﬂ C R. The distribution
of 0 in the sector is described by a differentiable function F' (), with density
f(0) =F' () >0, for § € (¢,6), and monotonic hazard rate, % <%) > 0.
The most natural interpretation for 8 is the skill of an institution’s scientists,?
but it can also encompass the institution’s ability to supplement government
funding with funds from private sources. These may include for example in-

come from endowments, or, for universities, generated from students’ tuition

2In the simplest model, each institution is randomly assigned its staff. In reality, of course,
institutions compete for staff, which would make 6 endogenous. In a fully developed model
of the academic labour market, one would need to take into account the fact that researchers
prefer to join high quality institutions, and so competition among institutions might not
be based exclusively on salaries. Palomino and Sékovics (2004) is a model which combines
competition among institutions (sports leagues in their paper), with externalities among its
members (the individual teams).



fees, even though I do not model explicitly any technological complementarity
or financial cross-subsidisation between teaching and research (see for example
De Fraja and Valbonesi 2012). Another example is the possible commercial ex-
ploitation of research. T'wo institutions which differ in this respect, for example
because of their contacts with industry, of the effectiveness of their technology

transfer office or marketing department, will be characterised by different values
of 6.

2.2 Private benefits and cost of research.

Research bestows prestige, and a research institution’s objective is the max-

imisation of the total amount of research it carries out, r:
r(0) =a(0)+0b(0), (1)

where the link is made explicit between an institution’s type, 6, and the amount
of applied, a (#), and basic, b(f), research it carries out. The additive form
in (1) simply implies that the marginal rate of substitution between applied
and basic research is constant. Any preference that institutions might have is
normalised away, and the substantive part of (1) is that institutional preferences
between basic and applied research vary neither with their type 6, nor with the
amount of basic and applied research they do.

Institutions do not “sell” their research directly to users, but use government
funding to pay for it. Because of the government’s funding policy, basic and
applied research differ in their consequences for the institution’s overall funding.
They also differ in their effect on the institution’s total cost, to which I turn
next.

In general terms, a type 6 research institution’s cost of carrying out the
amount a of applied research and the amount b of basic research can be written

a53

¢(a,b,0,B). (2)

3This is similar to Gersbach et al (2010), who posit that aggregate amount of basic research

undertaken in society is a parameter of the function which gives the probability of a successful
innovation in each of the continuum of industries where research is undertaken.



B is the total amount of basic research carried out in the economy:

B /0 b(0) £ (6) db, 3)

where b (0) is the average amount of basic research carried out in the institutions
with productivity 6. In (2), total cost ¢(-) increases with a, b, and 6, and
decreases with B. This captures the externality bestowed on society by basic
research: basic research reduces the cost of applied research, and it is the latter
that has direct beneficial effects, as posited below, in Section 2.3.

A stylised model of the technology of research production suggests plausible
restrictions on the shape of the cost function (2). Suppose that research is
carried out by individual scientists employed by institutions. Scientists are
motivated by the desire to gain the admiration of the academic community, for
example by publishing in prestigious journals, by winning prizes and awards and
so on. Institutions have the same motivation, but also a budget to allocate to
the many potential projects as effectively as possible. They see the various
research proposals from scientists they employ or consider appointing, and
choose which to pursue: they hire, tenure, or reduce the teaching time of the
scientists proposing a given project, authorise the lab costs necessary, and so
on.

Suppose next that institutions can assess applied research projects, at least
in expectation. Given the model sketched above, a first natural assumption is
Caa (+) > 0: institutions see all the proposed projects, and choose which to carry
out in order of “value for money”, the cheapest first and so on, making each
additional project dearer than the previous ones. Not so for basic research.
Because basic research projects are impossible to evaluate ex-ante and so im-
possible to compare, institutions simply value them at the average value, and
approve them sequentially (or according to some other criterion, also, neces-
sarily, unrelated to their true value) until the desired total number is reached.
Formally this implies éy, (-) = 0. Next I posit ¢, () = 0. This is justified by
the complete unpredictability of the beneficial effect of basic research: each
applied research benefits equally from any basic research project, via the ag-
gregate amount B, and so there is no complementarity between any given basic
and any given applied research project, and in particular no complementarity

between basic and applied research within an institution. ¢y () = éw () = 0
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allows me to write the cost function (2) as ¢ (a, b,6, B) = c(a, 0, B) + bc® (0, B)
for some functions ¢ and .

This can be further simplified with the assumption that ¢4 (6, B) = % (9, B) =
0: neither # nor B make it easier to assess the value of a basic research project.
This might at first sight appear unrealistic; it is, however, in the spirit of the
model of the production function for research I sketched above, whereby an
institution finances a projects if it assesses it to have value exceeding a certain
threshold. Consider the role of § and B in an institution’s choice of applied
research projects. The nature of the uncertainty in applied research can be cap-
tured by the assumption that institutions observe the true value of a project
with an error, and the error is larger when 6 is higher and when B is lower.
This implies ¢qp (a,b,0,B) > 0 and ¢,5 (a,b,0, B) < 0. However given my
assumption that institutions are unable to assess at all the expected value of
a basic research project ez-ante (or ex-post within a reasonable time interval),
this argument does not apply to basic research. If all projects are assessed by
the institution at the average value of a basic research project, irrespective of
the value of 6 and B, then ¢y (a,b,0, B) = ¢,p (a,b,0, B) = 0. Therefore, the

term c® (0, B) in the cost function given at the end of the previous paragraph

4This can be put formally. Suppose that an applied research project is characterised
by a parameter v € R, and let the probability of success of a project of type v be ¢ (v),
¢ : R —[0,1] an increasing function. v is observed by the institution with an error: given
a project of true type v, the institution observes v 4 ¢, where ¢ is distributed, independently
of v, with mean zero and variance o (6, B), with g (-) > 0: a lower 6 institution commit
smaller errors, and op (-) < 0: if the aggregate amount of basic research B is higher, then
errors are smaller for everyone. Given this, to minimise the cost of achieving a number a
of successful applied project, the institution will only select projects with a cut-off observed

value above v%, where
+oo +oo
o= [ [ e @-va )i

where f” and f¢ are the densities of v and ¢ respectively. The overall cost of obtaining these
a successful projects, assuming that each projects has the same cost, is (proportional to) the
number of projects whose observed value is v® or above:

/ o / T e (6= ) f* (o) dods,

Cost is therefore lower when the variance o (6, B) is lower.



is constant and can be normalised to 1; the cost function (2) simplifies to
¢(a,b,0,B) =c(a,6,B)+b. (4)

The simplification in (4) has also a useful implication for the interpretation
of the results of the paper. I show below in Proposition 3 that, in conditions of
imperfect information, low 6 institutions, which are more efficient in carrying
out applied research, do more basic research. This is not the case with symmet-
ric information. Because ¢} (6, B) = 0, it is clear that this is not because they
are also better at basic research, but a consequence of a different mechanism:
the fact that the funding agency’s information disadvantage forces it to offer
funding that institutions can use to pay for basic research in order to induce
those institutions that are efficient at applied research to do more of it than
they would like. In other words, the stylised fact that better institutions do
more basic research is not a consequence of their superior ability to do basic
research, but of their superior ability to do applied research.

These restrictions on the cost function are collected formally in Assumption

Assumption 1 The cost function of a type 6 institution is given by (4). For
every a, B > 0, for every 6 € [Q, ﬂ, the function c(a, 0, B) satisfies:

1. co(-)>0,¢(-) >0, c5(-) <0, c(0,6,B) =0.
2. Caa () > 07 CBB () > 07 Caf () > 0; CBa () < 0.

3. —cp(a,0,0) > 1 for every a > 0, for every 0 € [Q, ﬂ

To recap, Assumption 1.1 simply defines 6 as a measure of cost, captures
the externality created by B, and rules out fixed costs. The second set of
hypotheses are natural decreasing returns to scale assumptions (¢4 (-) > 0
and cpp () > 0), and that a lower § and more basic research decrease the
marginal cost, as well as the total cost. Assumption 1.3 avoids unrewarding
corner solutions by ensuring that if there is no basic research in society then a

very small amount reduces the cost of research by more than it costs.



2.3 Social benefits and cost of research

Basic research affects welfare only though its effect on the productivity of in-
dividual institutions’ cost of carrying out applied research. Instead, applied

research affects directly national income, which I define as
Y (4), (5)

with Y7 (A) > 0, V" (4) < 0.

A:Lawmwma (6)

denotes the expected and actual total amount of successful applied research,
where a (0) denotes the average amount of applied research carried out in the
institutions with productivity 6. A is therefore a standard Solow residual.

As with basic research, the externality does not create the appropriability
problems which beset R&D activities carried out in profit maximising firms,
well-understood by the literature since at least Arrow (1962). This is both
because all effects of research are internal to the government, which funds
research,” and because individuals and institutions doing research are not con-
cerned with its monetary appropriability: their reward is the production of
knowledge, not its financial exploitation, as has long been recognised (see
Stephan 1996 for a comprehensive review). Therefore the value of a given
project a is the same for a fully appropriable one, for example the development
of a new therapy by a private profit-making pharmaceutical company receiving
a government subsidy to research, or a research centre or a university selling a
patent through a TTO,® or one with more diffuse benefits, such as an improve-
ment in communication technology, which benefit all firms and consumers.

The government’s objective function is the total national income, reduced

by the cost of the taxes necessary to fund the research sector, which includes a

°Of course in an international context, some of the benefits determined by the expenditure
of one country’s taxpayers’ money do accrue to different countries. This can be captured by
re-interpreting some of the parameters that measure the benefit of research or the shadow
cost of public funds, A and & in (7), to take this international spillover into account.

6The analysis of the role and effects of Technology Transfers Offices, outside the scope of
this paper, can be found for example, in Macho-Stadler et al (2007) and in the references
reported there.



distortionary component, plus the non-monetary benefit of research (prestige,

etc.). Formally, the government’s payoff function is
E(A+B)+Y (A —(1+\NT, (7)

where k € R is the weight of the non-monetary benefit of research,” A > 0 the
shadow cost of public funds, and T the total funding to research.

The government chooses its research funding policy: this takes the shape of
a link between the amount of applied research carried out by an institution and
the funding provided by the government to that institution: formally, a policy
is a function C (a), where C is the total payment to an institution that carries
out amount a of research. Factoring in institutions’ optimisation problems,
a policy C (a) can be written as a pair of functions, {b(6) 7“09)}96[@,9’]’ the
amount of basic and applied research in a type 6 institution, where b () =
C(a(8)) —c(a(d),6,B), or equivalently as {r (6),a («9)}96[&9—], the amount of
total and applied research in a type 6 institution.

~ Given a research policy, the total tax needed to fund it is simply T =
fge C(a(8)) f(6)dh, and, in view of (1), (3) can be replaced by:

B = / v (6) — a(6)] £ (6) do. (8)

The following ensures that applied research is sufficiently important.

. Y'(A)+k
Assumption 2 For every A > 0, 75— > L.

That is, the marginal social benefit of applied research exceeds the private
benefit,® implying an externality in applied research. Since the private benefit
of applied research equals the private cost of basic research, and the latter
equals the social cost of basic research, Assumption 2 implies that the social

benefit of applied research exceeds the social marginal cost of basic research.

"k could be negative, indicating a “philistine” government: my results imply that even

such a government would tolerate, indeed fund basic research.
8Strictly speaking, the private benefit in the absence of government incentives.

10



3 Results

3.1 Preliminaries

The viewpoint of this paper is normative: I study how the government should
distribute the research budget across institutions and direct institutions’ choice
of the balance between applied and basic research to maximise its objective
function (7) subject to information constraints, discussed in detail below. Be-
fore I present the results, it is convenient to define the amount of applied
research which equates the marginal return on applied and basic research.

Definition 1 a* (0; B) is value of a which solves
o (a,0,B) = 1. 9)

That is, a* (0; B) is the amount of applied research which maximises type
6 institution’s objective function when the aggregate amount of basic research
is B, provided the funding available to the institution is large enough not
to constrain applied research; this can be defined as the individually efficient
expenditure on applied research. Note that 9a () — _0l) ~ () and %Eg') =

90 Caal-
—?%8 > 0. That is, more efficient institutions have a,( iligher individually
efficient expenditure on applied research, and an increase in the level of basic
research increases the individually efficient expenditure on applied research for
all universities. This “crowding in” of basic research (Malla and Gray 2005, p

434) seems natural.

3.2 Perfect information

The first proposition gives the benchmark case in which the government has

complete information. Let a; (6), A; and B be defined by:

oo (0),6,B) = L2 EE, (10
4= /9 a1 (6) £ (6) do, (11)
HLA:/Q es (@ (0).0, By) f (6)df+ 1. (12)

11



By Assumption 2, % > 1, and so ay (0) > a* (0; By).

Proposition 1 If the government could observe perfectly the productivity of
each institution and the amount of applied and basic research each institution

carries out, it would choose: ay (0), and any function v (0) > a; (0) such that

Jyr(8) f(6)d8 = A, + By.

The proofs of all results are relegated to the Appendix. Notice that, since

—cp(a1(0),0,0) >1>1-— 1%\, by virtue of Assumption 1.3, and cgp (-) > 0

in Assumption 1.2, then B; determined in (12) is strictly positive.
Proposition 1 is a straightforward first best result: with perfect information,
the government simply asks each institution to carry out a certain amount of
% > 1, this amount exceeds a* (0; By), that is, it
exceeds what each institution would choose if it were simply given a budget to

applied research. Since

spend as it pleases. This is natural: the government internalises the benefits
of applied research, and so it derives a larger benefit from it than individual
institutions do. Note that (10) implies that the marginal cost of doing applied
research is the same in every institution. This is efficient; if it were not the
case, the government could transfer research from one institution to another
and reduce the overall cost of applied research.

Notice that more efficient universities do more applied research: a} () =
—:;%8 < 0. They are better at it, so this is natural. Equally natural is the
fact that the distribution of basic research across universities is a matter of
indifference.’ Since all institutions are equally productive at basic research,
the government determines the total amount of basic research in (12) and then
distributes it in any feasible way, that is in any way such that b(6) > 0 for
every 0 € [Q, ﬂ . Lastly, note that an increase in £ and a reduction in A increase
ay (0) for every 0 € [Q, cﬂ, thus increasing A; and B.

I consider next a lower information requirement on the government’s part.

YWith a general cost function (2) instead of (4), a* (6; B) would be defined not by (9),
but by the solution in a to ¢, (a,0, B) = c® (9, B); in this case the government would allocate
basic research to the lowest cost institutions only, or, assuming also decreasing returns to
scale in basic research, in such a way to equalise the marginal cost of basic research. The

other qualitative features of the analysis would not change.

12



Corollary 1 If the government can observe each institution’s type and the
amount of applied research it carries out and, but cannot observe the amount

of basic research, then it would choose ai (6) and any function
C’(a1 (0)) > c(a1 (9),9, Bl) (13)
such that [, [C (a1 (6)) — (a1 (6) .6, B1)] f (8) d6 = B.

That is, the optimal policy when the government is unable to observe basic
research is exactly as in Proposition 1. The reason is straightforward: the
government wants each institution to carry out the appropriate amount of
applied research, and offers individualised contracts to each institution with
this requirement. These contracts require an amount of applied research higher
than what the institution would do on its own (a; (#) > a* (6; By)): they are
therefore incentive compatible. At least some institutions are offered more
funding than they need for the applied research they are asked to carry out:
for them the LHS of (13) exceeds the RHS. These institutions use any excess
funding to pay for their basic research, which, as before, is distributed in any
feasible way.

The policy derived here cannot however be implemented if the government
cannot observe each institution’s productivity parameter, #. The reason is that
Proposition 1 and Corollary 1 require each institution to choose a combination
of basic and applied research effort such that applied research has a higher
marginal cost than basic research. Hence, if institutions were simply offered
funding C'(a, (8)) and asked to carry out a; (f) applied research, they would
have an incentive to claim to have a higher # than they have. By doing so,
they would receive less funding but nevertheless be able to increase the total
amount of research they do with their funding, as they would be able to switch
away from the more costly applied research and do more basic research. For-
mally, presented with the link between a funding level menu C (a, (0)), a type
6 institution would claim to be of type min {al_l (a*(6;B)),0 } In this way, its
marginal cost of doing applied research is as near as possible to 1, its marginal

cost of basic research.

13



3.3 Information asymmetry.

I now consider the more realistic information structure where the government
can observe neither #, an institution’s productivity, nor b, the amount of basic
research it does. Instead, the government can observe, and an external ad-
judicator can verify, whether an agreed level of applied research a has been
carried out. In practice, and in line with the toy model sketched above, ez-
ante uncertainty about research plays a limited role: although each project is
uncertain, an institution carrying out a portfolio of applied research projects
will roughly know how many will succeed. An aggregate payment linked to the
number of successful applied research projects, within a reasonably short time
horizon, is therefore a feasible contract. In sum, applied research is observable

and contractible, basic research is not.!°

3.4 Incentive Compatibility

In this subsection, I determine the constraints imposed by the information
disadvantage of the government. I describe them via the standard revelation
approach, that is supposing that the government asks each institution to re-
port its own type, having committed to a policy as a function of the reported
type; by the revelation principle, the government cannot improve on the pay-
off it can obtain by restricting its choices to policies that satisfy the incentive
compatibility constraint, that is the property that no institution has an incen-
tive to misreport its type. This constraint is derived next. Recall that a policy
{C(a(9)),a (0)}96[@5] can be written as {r (6) ,a (9)}96[@5], with 7 (0) and a (0)
the total and the applied research required of institution of type 6, 6 € [Q, ﬂ

10This is recognised in peer review based formal evaluation mechanisms, which are intended
to assess the research effort of institutions, both in applied and in basic research. For example,
the version of the exercise carried out in 2014 in the UK, known as REF, has two measures
of output, academic publications, judged solely on their academic merit, irrespective of their
applied or basic nature, and impact of research on society: this needs to quantify “all kinds
of social, economic and cultural benefits and impacts beyond academia” (HEFCE 2011, p 4),
and, given both the short time horizon and the exacting standard of the required link from

research to benefits, it is arguably only applicable to applied research.

14



Proposition 2 A policy {r () ,a (9)}96[@9] is feasible and incentive compatible
if it satisfies, for 0 € [Q, ﬂ :

14
15
16
17

=—cp(a(0),0,B), r(0) free;r(9) =0, (14)
(15)
(16)
(17)

(14) and (15) are standard, (16) follows from the requirement that cost be
decreasing in 6: if not, an institution could pretend to be of a worse type,

receive more funding and also be required to do less applied research. (17) is
simply b (0) > 0.

3.5 The optimal funding policy

I am now in a position to present the government maximisation problem. This
is the choice of a policy {r (6),a ()}, which satisfies the constraints given in
Proposition 2 and maximises the government objective function. As in Section
3.2, A and B, the aggregate amount of applied and basic research are best
treated as parameters chosen by the government, subject of course to their
respective definition constraints, (6) and (8). Requirement (16), that a (0) >
a* (0; B), implies that the government might want to exclude some institutions.
If it does so, it will exclude institutions with # above a certain threshold. This
threshold, 6, € [Q, (ﬂ, is itself a choice variable.

The government’s problem is therefore the following.

Jax ¥ (A)+k(A+B)—(1+ A)/@ 0 [c(a(6),0,B)+r () —a()] f(0)do

st (6), (8), (14), (15), (16), (17). (18)

I can now derive the optimal funding policy. This is based on three func-
tions, a* (9; B) given above in Definition 1, and o (9; B, 3) and r* (6; B, 6,),
defined next. For given parameters B > 0, 8 > 0, let o’ (6; B,3) be the
solution in a of
Y'(A)+k

14+ A

BE(0)
f(9)

o (a,0,B) = +8 - cga (a,0, B) . (19)
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The curve a” (6; B, 3) is drawn in Figures 1 and 4, and is intuitively discussed
following Corollary 2. Next, let 7* (0; B,6y) be the solution to the following

differential equation:
7(0) = —co(r(0),0,B), r(6y) = a* (6o; B) . (20)

That is, for given B, r* (0; B, ) is the function r (6) which satisfies the incen-
tive compatibility constraint “shifted” so as to intersect a* (6; B) at § = 6,.

a4
do

/'\

Assumption 3 (i) co (1) > <. (i) ¢ (1) > C‘”“('g 4 Laol o ) (iii)

Caa ) ’ CGaa(' CGaa( (0

Chaa () > 0.

Loosely speaking, the first two statements in Assumption 3 restrict cg (-)
to be “large enough”: cost differences among institutions, measured by the
parameter 6, must be sufficient important. 6, the measure of the differences
in productivity among institutions, is unobservable, and so the first two state-
ments in Assumption 3 simply require that the information disadvantage of
the government be sufficiently serious. It is this disadvantage that makes the
analysis relevant: in the extreme case where all research institutions have the
same cost, ¢y (-) = 0, the government’s inability to observe their productivity
is obviously not a problem. Of course, the considerable effort that funding
agencies exert to ascertain the research potential of the research institutions
they sustain does suggest strongly that these differences are indeed important

in practice. The third statement in Assumption 3 is a regularity restriction.

Proposition 3 Let Assumptions 1-3 hold. If problem (18) has a solution, then
there exist 0,05 € (0, 6o] with < O < 6 < 6y such that:

if0 € [0,0x) then a(8) > a* (6;B) and b(8) > 0
if0 e [ é) then a (0) = a* (0; B) and b(6) > 0;
if0 e [ 0] then a (0) = a* (0; B) and b () =

if 0 € [00,8] then a(6) =b(0) = 0.

The following implication of Proposition 3 is worth stating formally, as it

helps illustrate the optimal policy in a diagram.
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Corollary 2 Let Assumptions 1-3 hold. If problem (18) has a solution, then
there exist B > 0, 0y € [Q, ﬂ, and 3 > 0, such that:

a (0) = min {max {a* (0; B) caft (0, B,ﬁ)} , 77 (0; B, (90)}
b () = max {r* (0; B, 0y) — max {a* (6; B),d" (0, B,ﬁ)} ,O}

Jor 6 € 10,60], and a () =b(0) =0 for 6 € (6o,6].

The optimal policy described in Proposition 3 and Corollary 2 is depicted
in Figure 1. In each panel of the Figure, the vertical axis measures the amount
of research, and the horizontal axis an institution’s productivity parameter, 6.
Only institutions with 6 below 6y, the intersection of r* (6; B, y) and a* (0; B),
receive any government funding. In each panel, there are three different curves.
The solid thin line is the locus r* (6; B, 6y): by Proposition 2, it represents the
total amount of research carried out by a type 6 institution. The dotted line is
locus a* (0; B), and the dashed line is a® (0; B, 3). By Corollary 2, the amount
of applied research each institution does is given by the higher of these two
curves, if it is below 7* (0; B, 6y), and otherwise by r* (6; B, 6) itself. In the
latter case, the institution does no basic research. In both panels, the solid thick
curve is the amount of applied research carried out by a type 6 institution, and
the distance between the latter curve and r* (6; B, 6), shaded in grey in the
diagrams, is the amount of basic research done by a type 6 institution.

The proof of Proposition 3 shows that 3 in (19) is positive. (1 — () is the
multiplier associated with the distortion in (aggregate) basic research. It is 1
(and so § = 0) with symmetric information, as the comparison between (10)
and (19) shows. Together with Assumption 2, this implies that the dashed line
a’ (+) is above the dotted line a* (+) in a right neighbourhood of §: the most
efficient institutions do more research than they would like.!!

The panels of Figure 1 differ in the position of the curve o (0; B, 3). The

latter can have three kinds of relationship with the two other relevant curves,

Tn aggregate, the marginal cost of applied research is higher than the marginal cost
of basic research. This is in line with the empirical evidence which suggests that basic
research expenditure is a more important productivity determinant than applied research
(e.g., Mansfield 1980; Link 1981; Griliches 1986). It follows from the optimal policy: if the
government simply financed research without trying to direct it (for example through lump
sum unconditional transfers), applied and basic research would have the same social benefit.
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Figure 1: Applied and basic research. The second best policy.

indicated by the white numbers in a black disk, reflecting the three possible
patterns of complementary slackness of the constraints in Problem (18). In
region 1, both (16) and (17) are slack; in region 2, constraint (16) is binding.
In region 3, (17) is binding. The conceptual difference between regions 1 and
2 is that research institutions in region 2 choose their “preferred” combination
of applied and basic research, and those in region 1 are required/incentivised
to do more than this amount. Research institutions in region 3 do only applied
research.

The position of the curve a® (6; B, 3) and hence which region a given in-
stitution type @ is in, is affected by four factors, as shown by (19): the direct
effect of applied research on national income, Y’ (A); the “prestige” effect of
research on the policy maker’s payoff, k; the shadow cost of public funds A; and
finally, the endogenously determined overall effect of basic research on institu-
tions’ cost of doing applied research, 3. The first three simply shift the dashed
curve a® (6; B, 3) up and down in a parallel fashion (leaving aside the indirect
effect through B). Thus, other things equal, increases in & and in Y’ (A) and
decreases in A all increase the amount of applied research, and decrease the
amount of basic research. The sign of the effect for £ and A\ follows from the
fact that the cost of applied research is higher that that of basic research, there-

fore, if research becomes more desirable, higher k, or cheaper to fund, lower
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A, more of the “expensive” type, applied research, will be done, moving the
optimal policy further away from the institutions preferences.

The fourth term 3 has a more complex role. It captures the distortionary
effect of information asymmetry (and so, as (10) and (19) show, it is 0 with
perfect information). Apparently in contrast to the “efficiency at the top”
principle, when 3 > 0 the amount of applied research done by the most efficient
institution is higher than the first best amount. The reason is that information
asymmetry affects the total amount of basic research that it is optimal to carry
out, and therefore the socially optimal amount of applied research that the
most efficient institution should do. For higher values of 6, however this effect
is reduced by the incentive effect: in order to induce institutions to self-select,
it is necessary to prevent high types from pretending to be low type, and thus
doing less applied research and devote funds to the cheaper basic research:
reducing sufficiently the amount of applied research makes this less attractive
for a good institution than for a bad one. Basic research is therefore used to
provide incentives for institutions to reveal their type and commit to carry out
applied research in excess of a* (f; B). The reduction in applied research for
high cost institutions is taken to the extreme for 6 > 6,: they would do some
research if the government could observe their type, but receive no funding
when the government has imperfect information.

The next Section describes in detail how the link between applied research
and total funding can be implemented in practice. Before, I consider a special

case, which illustrates the role of the basic research externality.

Assumption 4 The cost function c(a,0, B) is additively separable in (a,6)
and B: there exist ¢ (a,0) and  (B) such that c¢(a,0, B) = ¢(a,0) + ((B) for
every (a, 0, B).

In words, B affects only the fixed cost of doing applied research.
Corollary 3 If assumption 4 holds, then c, (a (0),0, B) = 1+<% +({ (B)F (00)>.

Recall that for the curve a* (0; B), it is ¢, (a*(-),8,B) = 1. Therefore
by how much applied research is pushed above the efficient level in the most
productive institutions, that is by how much the “starting” point of the dashed

curve a®f (+) exceeds that of the the curve a* (9; B), depends on the extent by
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which %, the marginal benefit of an increase in applied research, exceeds

(' (B) F (6p), the marginal cost of an increase in basic research.

4 Implementation

This section investigates how a central funding agency can implement in prac-
tice the optimal policy derived in Proposition 2. This agency is constrained by
the fact that basic research is unobservable. All it can therefore do is to stip-
ulate a link between the amount of applied research carried out and the total
amount of funding an institution receives. Mathematically, this is a function
C' (a), which gives the total funding as a function of the total amount of applied
research carried out. Since there is a one-to-one relationship between 6 and a,
this is well defined.

The shape of this function depends on which of the three regions identified
in Proposition 2 the optimal choice belongs to. To see this, consider an institu-
tion of type 6 which, given the incentive compatible policy {r () ,a (9)}0e[g,§]=
chooses r () and a (#) and therefore it obtains total funding C' (a (#)). In region

1, the total funding it receives is
C(a(0)) = c(a™ (6:B,5) .0, B) + [r* (0; B,0o) — a" (6; B, §)] .

The first term is the cost of carrying out a® (6; B, 3) amount of applied re-
search and the terms in the square brackets the cost (and the amount) of basic
research. For fixed B and 3, let 6% (a; B,3) be the inverse of the function
a’ (0; B, 3): 0% (a; B, 3) is the value of 6 such that o (0; B, 3) = a. Consider
now an institution which, faced with a schedule C (a) chooses to carry out an
amount a of applied research; if the policy is incentive compatible, it has type
6K (a; B, 3)). The total funding it receives is given by:'2

Cla)=c (a,@K (a; B, ) ,B) +r* (OK (a; B,B);B,QO) —a. (21)

2Notice that, faced with (21), a type 6 institution does indeed want to carry out precisely
a = a® (0; B, 3) applied research. To see this, note that it will solve

maxmax {a + [C (a) — c(a,0,B)],a” (0; B)},

az

where C'(a) is given by (21). The first order condition for the above is
Ca (a, 0% (a; B, B) ,B) = ¢4 (a,0,B).
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Figure 2: Implementation: The LHS of Figure 1.

Corollary 4 If a(0) = 0% (a; B, 3), then C (a) is increasing. C (a) is conver

Zf oa* (GB) > da¥ (6;9935)

if and only

Therefore C'(a) is convex if the relative slope of the dashed and dotted
curves is as in the LHS of Figure 1, concave if it is as in the RHS.

The same procedure can be applied to derive the shape of C'(a) in the
other regions. Begin with region 2. Here, let 6* (a; B) be the inverse function
of a* (0; B), so that total funding is given by:

C(a)=c(a,0"(a,B),B)+r* (0" (a,B); B,6) — a. (22)
Corollary 5 Ifa(0) = a* (0; B), then C (a) is constant.

Finally region 3. With the same argument used for region 1, I show that

the function is again increasing and convex.

Corollary 6 Ifa(0) =1r*(0; B,6), then C (a) is increasing and convex. More-
over, at the boundary between region 1 and 3 the slope of C (a) is increasing in

a.

Having determined the slope of the function C (a), I show in Figure 2 how
the funding agency can implement it in practice. The Figure shows a carte-
sian space with the amount of applied research on the horizontal axis, and

the total funding on the vertical axis for three different institution types. The
function C (a), defined for a € [a* (6o; B) , max {a® (6; B, 8) ,a* (6; B)}] is the
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thick solid line: points on this locus represent combinations of funding and ap-
plied research which the funding agency allows research institutions to choose
from. Since the funding agency cannot tell types apart, it is the same in the
three panels, and it is drawn for the case depicted in the LHS panel of Figure
1. Each diagram also shows the indifference curves, and, shaded, the “fea-
sible set”, the combinations of funding and the amount of applied research
which a type 6 institution is able carry out with that funding. The LHS, the
middle and the RHS panel show these for the least productive active institu-
tion, for one with high cost, and for a very low cost institution, respectively.
Consider first a type 6y institution, shown on the LHS panel. Its indifference
curves are the solid thin lines;'? its feasible set, the grey shaded area, is the set
{(a,t) € R|c(a, by, B) < t}. This institution has effectively no choice: only
the point (a* (0y; B) ,C (a* (6o; B))) marked by X in the LHS diagram, is both
on the solid thick locus and in the “feasible set”. Not so however for more
productive research institutions: take type 6; € (fk,6p), illustrated in the
middle panel. Its indifference curves are the dashed lines, and its feasible set
again the grey area, clearly bigger than a type 6y’s. It therefore has a gen-
uine choice among the points in the grey area and on the thick solid line. The
best among such points is (a* (61; B) ,C (a* (61; B))), point X in the diagram.
Notice that the required level of applied research, a* (0;; B), will cost this in-
stitution only ¢ (a* (6y; B) , 0y, B), the vertical height of point Y, which is less
that C (a* (61; B)). After it has paid for its applied research, it will spend its
“leftover” funding on basic research, which has marginal cost of 1, rather than
on more applied research, which, if pushed above a* (6;; B), would have a mar-
ginal cost exceeding 1. A type 6, institution therefore carries out an amount
of basic research measured by the vertical distance between points Y and X.
Finally consider a very efficient institution, one with cost parameter 6, <
Ok. Its efficient level of applied research is a* (f2; B), the abscissa of the minima
of the indifference curves in the RHS panel of Figure 2. This is the level it
would choose if funding were constant. But the optimal policy is designed so
that this institution does more than this amount: the funding agency offers

increasing funding for research institutions which exceed their efficient level

3They all reach a minimum at a = a* (fy; B), as can be seen by totally differentiating
a+t—c(a,by,B)
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Figure 3: Implementation: The RHS of Figure 1.

of applied research. Faced with the solid thick schedule, a type 0y research
institution chooses the combination that allows it to be on the highest possible
indifference curve, namely tangency point X in the RHS panel of diagram.'*
This institution’s cost to carry out the amount of applied research a® (6,; B, 3)
is the ordinate of point Y, and so a type 6 institution spends the rest, measured
by the distance between X and Y, on basic research.

When the relative position of the curves a* (6p; B) and o* (0; B, 3) is in-
stead that shown in the RHS panel of Figure 1, the optimal funding can be
implemented by the schedule illustrated in Figure 3. This differ from Figure 2
only in that the initial part of the schedule is also increasing. The RHS and the
LHS panels are conceptually identical in Figures 3 and 2: a type 6, institution
has no choice (LHS) and efficient institutions do more applied research than
they would like (RHS), and have enough funding to do basic research. In the
middle panel, in contrast, an institution of an intermediate € is seen to spend
all of its budget on applied research, to do more than its efficient level of ap-

plied research, and to have no funding left for basic research: in the picture,

4When the curve C (a) is convex, as in Figure 2, then the tangency point is a local, and
hence a global, maximum. To see this, note that, at the tangency point (az,C (az)), with
as = a® (6,; B, 3), the slope of the indifference curve is given by ¢, (a,6, B) — 1. The slope
of the funding schedule is given by (A16). In a neighbourhood of as, we have:

Cq (a2 +5792aB)_C¢1 (a2 +€a9K (a’2 +EaBa6) aB) = Caf (a’2 +5a93vB> (92 _9K (a’2 +57Baﬁ)) .

For ¢ > 0 (resp € < 0), the above is positive (negative), as a® (-) is decreasing and so 6% (-)
is too. Clearly if the curve C (a) is concave, then the tangency point is a maximum.
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Figure 4: Applied and basic research. Low social value of applied research.

the solid thick curve is steeper that the indifference curve at the boundary of
the feasible set.

5 Remarks

5.1 Low social value of applied research

I end the paper with three observations. The first sketches how the analysis
changes when Assumption 2 is violated, making the social value of applied
research sufficiently low, so that the curve a” (-) is below a* () at 6 = 6, as
illustrated in Figure 4. If a solution exists, it will still satisfy Proposition 3
and Corollary 2: the most productive research institutions do carry out their
preferred level of applied research. However, if there are institutions which are
given an incentive to do more than this, as in the right hand side panel, they
are the medium @ institutions.

If the relative position of the various curves is as depicted in the RHS
panel of Figure 4, then the optimal policy is implemented simply by a policy
of constant funding: all research institutions that agree to carry out at least
a* (0p; B) applied research, receive the funds necessary to pay for it, which they
can then use in any way they choose. In this case the diagram of the funding

schedule looks exactly the same as the initial portion of the thick solid line on
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Figure 2, from a* (0y; B) to a (5)

As I mentioned, the social value of research might be lowered by interna-
tional spillovers. It seems plausible that a small country would be less able to
internalise the benefits of applied research. The discussion of this section would
therefore loosely suggest that smaller countries should be more likely to adopt
a constant funding scheme.

5.2 “Dual support system”

In many countries, research is funded through a dual channel funding mech-
anism: some funding is a lump-sum, and some is allocated on a project by
project basis (for example, DBIS 2010). The implementation of the optimal
mechanism derived here is in line with this principle: all institutions are of-
fered research funding Cy = c(a* (6y; B), 6y, B), provided they carry out at
least a* (Ay; B) applied research, and in addition, institutions can apply to have
specific projects funded through a grant. In the model, these grants are not
available to all institutions though: to qualify to apply, an institution needs
to carry out at least a* (0x; B) applied research with the fixed sum Cy.'> The

additional grant funding is governed by the formula
g(a) =C(a+a" (0k;B)) —c(a” (6y; B), 6y, B) (23)

where ¢ (a) is the amount of grant awarded for agreeing to carry out a units of
applied research, in addition to the qualifying level a* (0k; B).

5.3 Full economic costing

As (23) makes it clear, the amount awarded as a research grant for a specific
project does not cover the additional cost of the project, except possibly for
very high levels of funding. Formally.

15While there is no formal bar to grant funding applications on institutions that carry out
only a limited amount of applied research, they are hampered by the stringent requirements
regarding, for example, research infrastructure and institutional support, and in practice they
do receive as research grants a lower proportion of their funding than institutions carrying
out more research.

25



Corollary 7 Suppose 0k < 0 = 0y. There exists A > 0 such that there exist
Or > Ok such that g (A) < c(a* (0k; B) + A, B,0) — c(a* (0k; B), B,0) for
every 8 € (0k,04).

Graphically, consider Figure 2. According to the Corollary, the slope of
the solid thick line in a neighbourhood of a* (6x; B), which represents the
additional funding received by an institution that just exceeds the qualifying
level a* (Ok; B), is less than the slope of the frontier at the same point, which
measures the additional cost incurred by such an institution to exceed by a
small amount the qualifying level of applied research, a* (0x; B).

In words, the additional funding does not cover the extra cost of grant
funded applied research, which is therefore “co-funded” by the grant funding
agency and the institution. This can be compared with the practice of full
economic costing, adopted, among others, by the research councils in the UK
(RCUK/UUK 2010): the amount of funding for a research grant is calculated
to exceed the cost to carry out the research it intends to fund. The rationale for
this mechanism is that the additional funds cover the institution’s fixed cost,
thus avoiding cross-subsidisation among an institution’s activities. My results
here do not lend support to this rationale. The optimal policy is more subtle:
the cross-subsidisation it entails, is in line with the principle of designing incen-
tives to delegate funding decisions to the economic agents possessing relevant
private information.

Note, however, that the argument underlying Corollary 7 does not apply
if curve C'(a) is concave, and may anyway be reversed for higher values of
applied research: very expensive applied research projects, which are carried

out by very efficient institutions, may require funding that exceeds their cost.

6 Concluding Remarks

Developed countries spend around one fifth of their R&D expenditure on basic
research (Gersbach 2009, p 114). Should they spend more? Less? The UK
government funds research via two separates channels, quality related funding
and research grants from the research councils, in a proportion of roughly 2/3

and 1/3. Is this ratio “right”? Also, research grants are less evenly distributed:
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the top 25 universities UK received 85% of the research grant funding, and 75%
of quality related funding. Are these proportions “right”, or would society be
better off with a different distribution of the same aggregate amount? Govern-
ment agencies typically award research grants on a cost plus principle, whereas
charitable bodies favour co-funding of research activities. Which is better?

The theoretical guidance necessary to answer these questions, and more
generally to establish a microeconomic foundation to any empirical study of
research funding is relatively scant. In this paper, I offer a framework for the
provision of this guidance. I develop a model built on the ideas that research
institutions can devote their research effort to basic or applied research, that
successful applied research, unlike basic research, is observable, that there are
differences in research productivity among institutions, and that the govern-
ment aims to distribute its funding in the socially preferred manner, which in
general differs from the preferences of individual institutions.
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Appendix

Proof of Proposition 1. Divide the government objective function (7) by (1 + \),
substitute (8) and the value of T' to write the optimization problem as:
Y (A) + k(A + B) /9
- 0),0,B 0) —a (6 0)do, (Al
e [t ®.0.5)+r@) —a @)1 ). (A1)

s.t. (6) and (8).

Next, following Leonard and van Long (1992, p 190), write (8) and (6) as

0 0)=1[r(©0) —a@®)]f(©), v (0) 0 ()

=0, , (A2)
a° (0) = a(0) £ (9), a’ (0) =0, a’ (0)

=B
= A. (A3)
Ignoring for the moment the constraint r (¢) — a (0) > 0, the Lagrangian for (A1) is:

L()=—1[c(a(0),0,B)+7(0)—a(@)]f(0)+[oa(®)+(1—-06)(0)—a@)]f(O),

where o and (1 — 3) are the Lagrange multipliers for constraints (A3) and (A2). I
write the multiplier of (A2) as (1 — () to lighten notation. The first order conditions
give (see Leonard and van Long, 1992, Theorem 7.11.1, p 255):

83—(£®=[—ca(a(9)79jB)+1+a—(1—/5)]f(9):0, (A4)
S = (L (1= 8)) £ 6) =0 (5)

= (a5)
1—5:HLA—/jcB(a(e),e,B)f(e)de. (AT)

(A5) implies, § = 0, and the result follows. m

Proof of Corollory 1. The problem in this case is the same as (A1), with the added
constraint a (6) > a* (0; B). At the solution of problem (A1) derived in Proposition
1, this constraint is slack and so the solution found there remains a solution for the

new problem. m

Proof of Proposition 2. Notice first of all that b(6) must be non-negative, and
so (17) must hold. For policy {r (0),a (0)} to be incentive compatible, every type 0
institution must (weakly) prefer to report to be of type 6 that to pretend of to be of
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type x, for every x € [Q, 5} This determines (14). To see how, begin to note that by
choosing to report type x € [Q, 5], institution of type 0 receives an amount of funds
for applied research a (z) and a total research funding ¢ (a (x),x, B)+r (z) —a(z) =
c(a(x),z,B)+b(x). Total cost is observable, and so the institution needs to choose
research levels such that its total cost equals the last expression. So if a institution
of type 0 has reported type z, it will choose research levels ar, and by, (L stands for
“lying”) which maximise
(ar,br) =argmaxa+b,

st c(a,0,B)+b=c(a(x),z,B)+7r(x)—a(z),

a>a(x).

ar, =maxa+c(a(z),z,B)+r(z) —a(x) —c(a,b,B),
st a>a(x).

Which has solution ar, = a* (0; B) if a* (6; B) > a(z), and ar, = a(z) if a* (0; B) <
a(x). That is:

ar, = max {a* (0;B),a(x)},

by = c(a(z),z,B) +r(x) —a(z)—clar,0,B),
and yields payoff:
a* (6; B) +c(a(x), B, x) +r(z) —a(x) —c(a” (6; B),0,B),

if a* (0; B) > a(z),

a(z)+cla(z),z,B)+r(z)—a(x)—c(a(x),0,B),
if a* (0; B) < a(x);

gp(x,@) =

consider local maxima:

(co(a(z),z,B)—1)a(x)+cp(a(x),z,B)+7(x),
0p (x,0) _ if a* (6; B) > a (x),

Ox co(a(x),z,B)a(x)+cyp(a(x),xz,B)+7(x) —cq(a(z),0,B),
if a* (0; B) < a(x).

For incentive compatibility, ¢ (z,0) needs to be maximised at the true type z = 6.

Evaluating the above at x = 0, we get:

0p (x,0) _ { co(a(x),z,B)+7r(x) if a*(0;B)>a(x),
oz co(a(z),z,B)+7(z) if a*(0;B) <al(x).
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The first line holds because the optimal a when a* (0; B) > a(z) is a* (0; B) and
cq (a* (0;B),x,B) —1 = 0: this establishes (14).

Now (15): following Laffont and Tirole (1993, p 121), for a policy to be incentive
compatible it must be that

000x =
We have 920 (0
%ﬁ = —cw(a(x),0,B)a(z) =0,

given our assumption that cqg (a (x),6, B) > 0, (15) must hold.
Finally, (16). This follows from

d(c(a(0),0,B)+1r(0)—a(f))
do

<0. (A8)

This is the constraint that total funding be decreasing in 6. If it were not the case,
then an institution could simply claim to have a higher 8 than it has, thus receiving a

higher funding, which it could spend on unobservable basic research. Expand (AS):
ca(a(0),0,B)a(0)+co(a(0),0,B)+7(0)—a(@) <0
which, using (14), becomes
[ca (a(0),0,B) —1]a(0) <0,
since a (0) <0, ¢, (a(0),0, B) must exceed 1, which is (16). m

Proof of Proposition 3. Begin by noting that a (6) € [a* (6; B) ,r ()], and there-
fore a solution exists only for values of @ such that r(0) > a* (0; B), that is for
0 < 0y at the candidate solution. This is because, by virtue of Assumption 3(i),
r(0) > a* (0; B) to the left of their intersection, 6.

I proceed as in Proposition 1: divide the maximand of problem (18) by (1 + \),

and construct the Lagrangian.

L()==1c(a(8),0,B)+7(0)=a(@)]f(0)—p(0)co(a(0),0,B)+
7(0) (a(0) —a” (6; B)) +m (0) (r (0) —a(0))+
[(1=8)(r(0) —a(0) +oa(0)]f(0), (A9)

where u (0), v (0), 7 (0), are the multipliers associated to constraints (14), (16), and
(17) respectively. As before (1 — 3) > 0 and o > 0 are the multipliers for (A2) and
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(A3). I have ignored constraint (15): it will be seen to be satisfied at the solution

found when it is ignored. The first order conditions on r (§) and a (6) are given by:

_63(%) =[(0) =pf(0) —7(0), w(@) =0, 1 (é) free; (A10)
83(59) = [~ca(a(0),0,B) + 5+ 0] f(0) +~(0) -7 (0)
— 11(0) cga (a () , 0, B) = 0. (A11)
(A10) has solution:
w(0) = BF(0) —T1(9), (A12)

having defined II (0) = f(f ™ (é) df. The first order conditions for A and B are the
same as in Proposition 1, giving ¢ = k4YI(4), Expand the condition on (1 — ),

[ED)
using (A12), and the definition of a* (6; B), which implies % = —?%8:
g [P 000 - 3P0 -1 @) s 0+ 0) 2
— 1+ \ s CB CoB Y Caa () .
Integration by parts gives:
k fo
1= 6= 5~ en (@ (00) 00, B)F (60) + (1= 8) [ F(0)con (-
+ A 9
6o )
w [ @m0 225 .
0 Caa (*)
and so
2 —en(a(00),00, B)F (00) Jg* [TL(O) con () +(0) 223 | do
|y Ts a0 B Fey) S| 619 g

1= [,° F () cop (-) o 1— [° F (0) cop (-) do
From (A1l) we obtain the optimality condition for a (6).

YA +k V(0) =7 (0)  BE6)-T(0)
1+ A f(0) 1 (0)

cq(a(0),0,B) = + 6+ coq (a(0),0,B).
(A14)
Next I show that 8 > 0. To see this, notice that (1 — ) measures the benefit
of relaxing the constraint b(6) > 0, which has a cost of 1, measured in the social
value of monetary units. Notice that the funding agency can always increase b ()
if it wants, because it can simply increase the funding to all research institutions,
and, since at the optimum they all do at least a* (0; B), they all prefer to spend the
additional funding on basic research. Therefore the benefit of increasing b (f) cannot

exceed the cost at the optimum: (1 — ) < 1.
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Now define the function af (6; B, 3) as the solution in a of
BF (9) — 11
f(0)

If I = 0, then af (6;B,8) = a®(0;B,3) and if II > 0, then a5 (0;B,3) >

K(9; B, B), since cgq (+) > 0.

Next notice that depending on the combination of complementary slackness for

Y (A) + k

¢q (a,0,B) = Y

+ 06— Cga (a,0,B). (A15)

constraints (16) and (17), a value of a (6) belongs to one of four possible regions:

1. a(f) —a*(0;B) > 0 and r(0) — a(0) > 0. Therefore, v(0) = 7 (0) = 0,
which means 7 (0) > a (0) > a* (0; B), and in this region, r () = r* (0; B, 6),
0 (6) = a5 (63 B, 9).

2. v(0) >0 and r(0) —a(f) > 0. Here, a () —a* (0; B) =0 and 7 () = 0, and
sor(0)=r*(0;B,0y), a(0) =a* (0; B).

3. a(f)—a*(0;B) >0 and 7 (0) > 0. In this region v (f) =0 and r (0) = a () =
r* (6; B, bo).

4. v(0) > 0 and 7 (0) > 0. Here, r(0) = r*(0; B,0y) = a*(0; B) = a(0), and
therefore this region is just the single intersection point between a* (0; B) and
7 (0; B, 6p).

As a preliminary step, I show that
if 0 € [Q, é) then a (0) > 0 and b(6) > 0;
if 9 [é, 90} then a (0) > 0 and b () = 0.

Proposition 3 requires that § belongs to regions 1 or 2, that is that a (8) € [a* (6, r* (9; B, 6y)).
Suppose by contradiction that a(0) = r*(0; B,0p). Then b(f) = 0 in {0

1

and so B = 0, against the Inada condition. That is, there is 0 > (90 such that
a(f) = aH( )(9 B, 3) < r*(0;B,6p) in a right neighbourhood of 0, with of course
a (5) =r* (Q;B,Ho) = aH( 0) <0 B ﬁ) Now we show that at any intersection be-
tween r* (0; B, 0y) and aH(e) (0; B, 3) the latter is less steep than r* (6; B, 6y), and
thus we obtain a contradiction: if aln((o) (0; B, B) is less steep than 7* (6; B, 0y) then

some 6 > #. Notice next that it cannot be 8 = 6, otherwise b(0) = 0 in

it must be above it in a right neighbourhood of 6.
Lemma Al of (0; B,3) > r* (0; B,0p) for 0 > 0.
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Proof. To see this, compare af (0, B, g) and r* (0; B, ) at their intersection. Since
we are assuming that a (0) > r* (6; B,0p), we have 7 (0) = 4} = 0. Moreover, since
a (0) is above a* (0; B) in [Q, é], it must be gF (6) —11(0) > 0 in [Q, 9} . Next totally

differentiate (A15):

Hence:

dag (0;B,g)
00 o

I need to verify that the following holds:

cag (+) + £ (() Caea()+ca0(‘)9d% (f_e))
)

0)
Caa()+gF0 —1I1

By Assumption 3, cgqq (+) > 0, and so I can multiply through and rearrange:

i # (7%) cus ()
0 a0 (¢

T (T 000 000 0 g —enaa (Vo ()| < () = S
aa W aaq

Again, by Assumption 3, the RHS is positive and the LHS is negative. Therefore, at

B(LK() > 89( ) that is r* (-) is steeper, and so it is below a® (-) in a

their intersection,
right neighbourhood of their intersection. The contradiction establishes the Lemma.
|

The Proposition now follows immediately. m

Proof of Corollary 2. Proposition 3 shows that a (6) is one of a* (0; B), a* (0; B, )
or 7*(0; B, 0p). Moreover, since it must lie between a* (0; B) and r* (6; B, 6y), it can
only equal a® (0; B, 3) — intersections excepted — between them. The second line
follows from the first. =

Proof of Corollary 3. Omitted. m
Proof of Corollary 4. Differentiate (21) with respect to a, using (14):
C' (a) = ¢, (a, 0% (a; B, B) ,B) —1. (A16)
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The above is positive because a’* (0; B, 8) exceeds a* (§; B). C is therefore increasing.

For the second part of the statement, expand C” (a):

K (,.
o (CL) = Caa () + Cup () W
This is positive if —2328 = aa*(gz;B) > 6aKE§9;B’ﬁ). [ |

Proof of Corollary 5. The derivative of (22) is:

00* (a; B) n or* (0* (a; B) ; B, 6y) 00* (a; B)
da 00 Oa

as ¢q (1) =1 along a* (6; B). m

C'(a) =ca(-) +co(")

~1=0,

Proof of Corollary 6. Let 6" (a; B, 6y) be the inverse function of r* (6; B, 6p), and
total funding is given by (recall that b(0) = 0 in this region):

C(a)=c(a,0" (a,B,0y),B). (A17)

Differentiation with respect to a yields:

Since r* (0; B, 0y) > a* (0; B) except at 6y, the above is positve in <9, 90>. To estab-
lish convexity, take C” (a):

00" (a; B, 0
ol (a) = Cua () + Cup () %’
which is positive as —5328 > ar*((gf,eo) = —cp (+).

For the second part of the statement, note that, in region 3 (that is to the left of
their intersection), the slope of C' (a) is ¢, (a, 0" (a; B, 6y) , B) — 1. In region 1, namely
to the right of their intersection, the slope is ¢, (a, 0K (a; B, B) ,B) — 1. Consider a

right neighbourhood of their intersection: the difference in slope is

cq (a,0" (a; B,6p),B) — cq (a, 0% (a; B, B) ,B)
= cq9 (a,03, B) (0" (a; B, 6p) — 0% (a; B, B)) . (A18)

This is positive, since " (a; B,0g) — 0% (a; B, 3) > 0, establishing the statement. m

Proof of Corollary 7. Omitted. m
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