

Курс «Институциональная экономика»

Семинар 2. Институты в экономическом анализе-2

Прахов Илья Аркадьевич

к.э.н., доцент Департамента прикладной экономики

5/6 февраля 2024 г.

Задача на кооперативное взаимодействие

В одной из частных школ директор ввел систему оплаты труда, согласно которой учителя получают вознаграждение в зависимости от успехов учеников на итоговом экзамене.

Рассмотрим двух учителей, которые преподают в одной и той же школе. Каждый из них может либо прикладывать усилия во время занятий, либо отлынивать, формально выполняя свои обязанности.

Известно, что если оба учителя работают добросовестно и прикладывают усилия в размере 3, то в среднем, учащиеся получают высокие оценки (10 баллов), а учителя получат соответствующее вознаграждение, равное 10.

Если трудится только один учитель, а другой отлынивает, то средняя оценка школьника снижается до **8** баллов (величина вознаграждения учителя также снизится до **8**).

В том случае, если оба учителя отлынивают, тогда средний балл учащихся будет еще меньше и снизится до 6 (аналогичным образом снизится и заработная плата учителей).

Выигрыш каждого учителя формируется как полученная заработная плата за вычетом усилий.

Вопрос 1. Составьте матрицу игры

Если оба учителя работают, то ученики получат 10 баллов, учителя получат вознаграждение, равное 10, каждый из них затрачивает усилия в размере 3, поэтому их итоговые выигрыши будут равны 10 – 3 = **7**.

Если один учитель отлынивает, то экономит на усилиях (для него усилия равны 0), а тот, кто работает, будет затрачивать усилия, равные 3. Итоговый балл учеников (и вознаграждение учителей) составит 8. Выигрыш учителя, который работал, составит 8 - 3 = 5, а того, кто отлынивал, составит 8 - 0 = 8.

Если оба учителя отлынивают, то экономят на своих усилиях (усилия равны нулю), поэтому их выигрыши будут равны среднему баллу учеников, т.е. **6**.

Матрица игры имеет вид:

	Учитель 2		
Учитель 1		Работать	Отлынивать
	Работать	7; 7	5; 8
	Отлынивать	8; 5	6; 6

Вопрос 2.

Какое равновесие по Нэшу (N.E.) установится при однократном взаимодействии? Будет ли оно устойчивым? Эффективным? Почему?

	Учитель 2		
Учитель 1		Работать	Отлынивать
	Работать	7; 7 P.O.	5; 8
	Отлынивать	8; 5	6; 6 N.E.

N.E.: оба учителя отлынивают. Устойчивое (невыгодно отклоняться, если другой учитель следует равновесной стратегии), но неэффективное равновесие (есть Парето-улучшение – Р.О.).

Р.О.: оба учителя работают. Эффективное (нельзя улучшить благосостояние одного учителя, не ухудшив благосостояние другого), но неустойчивое равновесие (у каждого игрока есть стимул обмануть и выбрать стратегию «отлынивать»). Стратегию, когда оба учителя работают, называют кооперативной, а соответствующее равновесие – кооперативным.

Вопрос 3.

В чем заключается проблема кооперации в данном случае? Как можно решить эту при однократном

взаимодействии?

	Учитель 2		
Учитель 1		Работать	Отлынивать
	Работать	7; 7 P.O.	5; 8
	Отлынивать	8; 5	6; 6 N.E.

Штраф = 2 за стратегию «отлынивать»

	Учитель 2		
Учитель 1		Работать	Отлынивать
	Работать	7; 7 N.E.	5; 6 ₍₈₋₂₎
	Отлынивать	6 (8-2); 5	4 (6-2); 4 (6-2)

Вопрос 4.

Предположим, что стороны взаимодействуют 5 периодов и следуют стратегии спускового крючка. Какое равновесие установится в этом случае?

Оба учителя обманут друг друга в первом периоде, поэтому в данном взаимодействии установится неэффективное равновесие, когда оба учителя будут отлынивать.

Вопрос 5.

Предположим, что стороны взаимодействуют бесконечное число периодов (стратегия спускового крючка). При каком значении дисконт-фактора возможно установление кооперативного равновесия?

	Учитель 2		
Учитель 1		Работать	Отлынивать
	Работать	7; 7	5; 8
	Отлынивать	8; 5	6; 6

$$\mathcal{L}$$
исконт – фактор : $\delta = \frac{1}{1+r}$

$$egin{cases} \pi_{y_1}^{He\ om\kappa\pi.} \geq \pi_{y_1}^{Om\kappa\pi.} \ \pi_{y_2}^{He\ om\kappa\pi.} \geq \pi_{y_2}^{Om\kappa\pi.} \end{cases}$$

Вопрос 5.

	Учитель 2		
Учитель 1		Работать	Отлынивать
	Работать	7; 7	5; 8
	Отлынивать	8; 5	6; 6

$$\left\{egin{aligned} \pi_{y_1}^{He\ om\kappa\pi.} &\geq \pi_{y_1}^{Om\kappa\pi.} \ \pi_{y_2}^{He\ om\kappa\pi.} &\geq \pi_{y_2}^{Om\kappa\pi.} \end{aligned}
ight.$$

$$\pi_{y_1}^{He\ omkn.} = 7 + 7\delta + 7\delta^2 + \dots = \frac{7}{1 - \delta}$$
 $\pi_{y_1}^{Omkn.} = 8 + 6\delta + 6\delta^2 + \dots = 8 + \frac{6\delta}{1 - \delta}$

$$\frac{7}{1 - \delta} \ge 8 + \frac{6\delta}{1 - \delta}$$

$$\frac{7 - 8(1 - \delta) - 6\delta}{1 - \delta} \ge 0$$

$$\frac{2\delta - 1}{1 - \delta} \ge 0$$

$$Omeem: \delta \ge \frac{1}{2}$$

Проблема координации: встреча в метро

	Турист 2		
Турист 1		Белорусская-	Белорусская-
		кольцевая	радиальная
	Белорусская-	2; 2	0; 0
	кольцевая		
	Белорусская-	0; 0	2; 2
	радиальная		

